Haitao Gan , Liang Liu , Furong Wang , Zhi Yang , Zhongwei Huang , Ran Zhou
{"title":"SML-Net: Semi-supervised multi-task learning network for carotid plaque segmentation and classification","authors":"Haitao Gan , Liang Liu , Furong Wang , Zhi Yang , Zhongwei Huang , Ran Zhou","doi":"10.1016/j.compmedimag.2025.102607","DOIUrl":null,"url":null,"abstract":"<div><div>Carotid ultrasound image segmentation and classification are crucial in assessing the severity of carotid plaques which serve as a major cause of ischemic stroke. Although many methods are employed for carotid plaque segmentation and classification, treating these tasks separately neglects their interrelatedness. Currently, there is limited research exploring the key information of both plaque and background regions, and collecting and annotating extensive segmentation data is a costly and time-intensive task. To address these two issues, we propose an end-to-end semi-supervised multi-task learning network(SML-Net), which can classify plaques while performing segmentation. SML-Net identifies regions by extracting image features and fuses multi-scale features to improve semi-supervised segmentation. SML-Net effectively utilizes plaque and background regions from the segmentation results and extracts features from various dimensions, thereby facilitating the classification task. Our experimental results indicate that SML-Net achieves a plaque classification accuracy of 86.59% and a Dice Similarity Coefficient (DSC) of 82.36%. Compared to the leading single-task network, SML-Net improves DSC by 1.2% and accuracy by 1.84%. Similarly, when compared to the best-performing multi-task network, our method achieves a 1.05% increase in DSC and a 2.15% improvement in classification accuracy.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"124 ","pages":"Article 102607"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125001168","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carotid ultrasound image segmentation and classification are crucial in assessing the severity of carotid plaques which serve as a major cause of ischemic stroke. Although many methods are employed for carotid plaque segmentation and classification, treating these tasks separately neglects their interrelatedness. Currently, there is limited research exploring the key information of both plaque and background regions, and collecting and annotating extensive segmentation data is a costly and time-intensive task. To address these two issues, we propose an end-to-end semi-supervised multi-task learning network(SML-Net), which can classify plaques while performing segmentation. SML-Net identifies regions by extracting image features and fuses multi-scale features to improve semi-supervised segmentation. SML-Net effectively utilizes plaque and background regions from the segmentation results and extracts features from various dimensions, thereby facilitating the classification task. Our experimental results indicate that SML-Net achieves a plaque classification accuracy of 86.59% and a Dice Similarity Coefficient (DSC) of 82.36%. Compared to the leading single-task network, SML-Net improves DSC by 1.2% and accuracy by 1.84%. Similarly, when compared to the best-performing multi-task network, our method achieves a 1.05% increase in DSC and a 2.15% improvement in classification accuracy.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.