Mitigating Night Biomass Loss in Outdoor Pilot-Scale Mixotrophic Algal Cultivation of Monoraphidium minutum Using Flue Gas Condensate and Cheese Whey.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Quyen Nham,Tristan Gordon,Hanna Farnelid,Catherine Legrand,Elin Lindehoff
{"title":"Mitigating Night Biomass Loss in Outdoor Pilot-Scale Mixotrophic Algal Cultivation of Monoraphidium minutum Using Flue Gas Condensate and Cheese Whey.","authors":"Quyen Nham,Tristan Gordon,Hanna Farnelid,Catherine Legrand,Elin Lindehoff","doi":"10.1002/bit.70027","DOIUrl":null,"url":null,"abstract":"In algal cultivation, nighttime biomass loss due to respiration and cell mortality can considerably reduce the amount of biomass produced during daylight. The adverse effect can be counteracted by mixotrophic cultivation, where an organic carbon (OC) source is used to supply the energy required for cell maintenance and division during darkness. The potential for mixotrophic cultivation to mitigate night biomass loss has yet to be tested under outdoor, large-scale conditions that use raw industrial waste streams, particularly during low-light seasons. We investigated night biomass loss in cultivation of the strain Monoraphidium minutum KAC90 in outdoor 1 m3 raceway ponds during the Nordic autumn. Flue gas condensate (nitrogen source) and cheese whey (phosphorus and OC source) were used for the mixotrophic treatment, while potassium monophosphate (phosphorus source) was used for the photoautotrophic control. Results indicate that under high OC availability, the mixotrophic treatment had a night biomass gain of 33% ± 16%, whereas it experienced a night biomass loss of 10% ± 9% under low OC. In contrast, the photoautotrophic control showed a night biomass loss of 5% ± 15%. In the mixotrophic treatment, algal biomass had a higher carbohydrate content, but lower levels of lipids and proteins than the photoautotrophic cultures. The cultivation of algae using cheese whey may increase biomass accumulation in darkness, enhancing the overall production of algal biomass rich in carbohydrates.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"20 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.70027","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In algal cultivation, nighttime biomass loss due to respiration and cell mortality can considerably reduce the amount of biomass produced during daylight. The adverse effect can be counteracted by mixotrophic cultivation, where an organic carbon (OC) source is used to supply the energy required for cell maintenance and division during darkness. The potential for mixotrophic cultivation to mitigate night biomass loss has yet to be tested under outdoor, large-scale conditions that use raw industrial waste streams, particularly during low-light seasons. We investigated night biomass loss in cultivation of the strain Monoraphidium minutum KAC90 in outdoor 1 m3 raceway ponds during the Nordic autumn. Flue gas condensate (nitrogen source) and cheese whey (phosphorus and OC source) were used for the mixotrophic treatment, while potassium monophosphate (phosphorus source) was used for the photoautotrophic control. Results indicate that under high OC availability, the mixotrophic treatment had a night biomass gain of 33% ± 16%, whereas it experienced a night biomass loss of 10% ± 9% under low OC. In contrast, the photoautotrophic control showed a night biomass loss of 5% ± 15%. In the mixotrophic treatment, algal biomass had a higher carbohydrate content, but lower levels of lipids and proteins than the photoautotrophic cultures. The cultivation of algae using cheese whey may increase biomass accumulation in darkness, enhancing the overall production of algal biomass rich in carbohydrates.
利用烟气冷凝液和奶酪乳清减少室外混合营养藻类培养中夜生物量损失
在藻类培养中,由于呼吸作用和细胞死亡造成的夜间生物量损失可以大大减少白天产生的生物量。这种不利影响可以通过混合营养培养来抵消,其中有机碳(OC)源用于在黑暗中提供细胞维持和分裂所需的能量。混合营养栽培减轻夜间生物量损失的潜力尚未在室外大规模条件下进行测试,这些条件使用原始工业废物流,特别是在光照不足的季节。研究了北欧秋季在室外1 m3沟道池中栽培单芽孢菌(Monoraphidium minutum KAC90)夜间生物量损失。采用烟气冷凝液(氮源)和干酪乳清(磷源和OC源)进行混合营养处理,单磷酸钾(磷源)进行光自养控制。结果表明,在高OC有效度下,混合营养处理夜间生物量增加33%±16%,而在低OC有效度下,混合营养处理夜间生物量减少10%±9%。相比之下,光自养对照夜间生物量损失为5%±15%。在混合营养处理中,藻类生物量的碳水化合物含量高于光自养培养,但脂质和蛋白质含量低于光自养培养。利用干酪乳清培养藻类可以增加黑暗中生物量的积累,提高富含碳水化合物的藻类生物量的整体产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信