{"title":"Mitigating Night Biomass Loss in Outdoor Pilot-Scale Mixotrophic Algal Cultivation of Monoraphidium minutum Using Flue Gas Condensate and Cheese Whey.","authors":"Quyen Nham,Tristan Gordon,Hanna Farnelid,Catherine Legrand,Elin Lindehoff","doi":"10.1002/bit.70027","DOIUrl":null,"url":null,"abstract":"In algal cultivation, nighttime biomass loss due to respiration and cell mortality can considerably reduce the amount of biomass produced during daylight. The adverse effect can be counteracted by mixotrophic cultivation, where an organic carbon (OC) source is used to supply the energy required for cell maintenance and division during darkness. The potential for mixotrophic cultivation to mitigate night biomass loss has yet to be tested under outdoor, large-scale conditions that use raw industrial waste streams, particularly during low-light seasons. We investigated night biomass loss in cultivation of the strain Monoraphidium minutum KAC90 in outdoor 1 m3 raceway ponds during the Nordic autumn. Flue gas condensate (nitrogen source) and cheese whey (phosphorus and OC source) were used for the mixotrophic treatment, while potassium monophosphate (phosphorus source) was used for the photoautotrophic control. Results indicate that under high OC availability, the mixotrophic treatment had a night biomass gain of 33% ± 16%, whereas it experienced a night biomass loss of 10% ± 9% under low OC. In contrast, the photoautotrophic control showed a night biomass loss of 5% ± 15%. In the mixotrophic treatment, algal biomass had a higher carbohydrate content, but lower levels of lipids and proteins than the photoautotrophic cultures. The cultivation of algae using cheese whey may increase biomass accumulation in darkness, enhancing the overall production of algal biomass rich in carbohydrates.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"20 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.70027","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In algal cultivation, nighttime biomass loss due to respiration and cell mortality can considerably reduce the amount of biomass produced during daylight. The adverse effect can be counteracted by mixotrophic cultivation, where an organic carbon (OC) source is used to supply the energy required for cell maintenance and division during darkness. The potential for mixotrophic cultivation to mitigate night biomass loss has yet to be tested under outdoor, large-scale conditions that use raw industrial waste streams, particularly during low-light seasons. We investigated night biomass loss in cultivation of the strain Monoraphidium minutum KAC90 in outdoor 1 m3 raceway ponds during the Nordic autumn. Flue gas condensate (nitrogen source) and cheese whey (phosphorus and OC source) were used for the mixotrophic treatment, while potassium monophosphate (phosphorus source) was used for the photoautotrophic control. Results indicate that under high OC availability, the mixotrophic treatment had a night biomass gain of 33% ± 16%, whereas it experienced a night biomass loss of 10% ± 9% under low OC. In contrast, the photoautotrophic control showed a night biomass loss of 5% ± 15%. In the mixotrophic treatment, algal biomass had a higher carbohydrate content, but lower levels of lipids and proteins than the photoautotrophic cultures. The cultivation of algae using cheese whey may increase biomass accumulation in darkness, enhancing the overall production of algal biomass rich in carbohydrates.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.