Evaluation of Alpha-Trees for Hierarchical Segmentation by Horizontal Cuts

IF 13.7
Xiaoxuan Zhang;Michael H. F. Wilkinson
{"title":"Evaluation of Alpha-Trees for Hierarchical Segmentation by Horizontal Cuts","authors":"Xiaoxuan Zhang;Michael H. F. Wilkinson","doi":"10.1109/TIP.2025.3588250","DOIUrl":null,"url":null,"abstract":"Alpha trees, and derived <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-<inline-formula> <tex-math>$\\omega $ </tex-math></inline-formula>-hierarchies are powerful tools for hierarchical image representation in computer vision. However, the quality of <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-<inline-formula> <tex-math>$\\omega $ </tex-math></inline-formula>-hierarchies has not been fully evaluated, limiting their further development and application. In our study, an algorithm for evaluating the quality of <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-<inline-formula> <tex-math>$\\omega $ </tex-math></inline-formula>-hierarchies based on horizontal cut filters is proposed. With the aim to automatically select optimal parameters and dissimilarity measures for <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-<inline-formula> <tex-math>$\\omega $ </tex-math></inline-formula>-hierarchy constructions, key factors including maximum accuracy, construction complexity, and efficiency of <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-<inline-formula> <tex-math>$\\omega $ </tex-math></inline-formula>-hierarchies are systematically considered. Notably, remote sensing images based experiments were conducted to demonstrate the usefulness of this algorithm. In addition, our algorithm can be potentially extended to qualify other types of hierarchical trees, making it useful for the automatic selection of optimal hierarchical segmentation methods.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"4646-4659"},"PeriodicalIF":13.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11083691/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alpha trees, and derived $\alpha $ - $\omega $ -hierarchies are powerful tools for hierarchical image representation in computer vision. However, the quality of $\alpha $ - $\omega $ -hierarchies has not been fully evaluated, limiting their further development and application. In our study, an algorithm for evaluating the quality of $\alpha $ - $\omega $ -hierarchies based on horizontal cut filters is proposed. With the aim to automatically select optimal parameters and dissimilarity measures for $\alpha $ - $\omega $ -hierarchy constructions, key factors including maximum accuracy, construction complexity, and efficiency of $\alpha $ - $\omega $ -hierarchies are systematically considered. Notably, remote sensing images based experiments were conducted to demonstrate the usefulness of this algorithm. In addition, our algorithm can be potentially extended to qualify other types of hierarchical trees, making it useful for the automatic selection of optimal hierarchical segmentation methods.
水平切割分层分割的alpha树评价。
α树及其衍生的α ω层次结构是计算机视觉中分层图像表示的强大工具。然而,α ω-层次结构的质量尚未得到充分的评价,限制了α ω-层次结构的进一步开发和应用。在我们的研究中,提出了一种基于水平切割滤波器的评价α-ω-层次质量的算法。为了自动选择α ω层次结构的最优参数和不相似度量,系统地考虑了α ω层次结构的最大精度、构造复杂性和效率等关键因素。值得注意的是,基于遥感图像的实验证明了该算法的有效性。此外,我们的算法可以潜在地扩展到限定其他类型的层次树,使其有助于自动选择最优的层次分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信