{"title":"STHD: probabilistic cell typing of single spots in whole transcriptome spatial data with high definition","authors":"Chuhanwen Sun, Yi Zhang","doi":"10.1186/s13059-025-03608-4","DOIUrl":null,"url":null,"abstract":"Recent advances in spatial transcriptomics technologies have enabled gene expression profiling across the transcriptome in spots with subcellular resolution, but high sparsity and dimensionality present significant computational challenges. We present STHD for probabilistic cell typing of single spots in whole-transcriptome spatial transcriptomics with high definition. With a machine learning model combining count statistics with neighbor regularization, STHD accurately predicts cell type identities of subcellular spots, revealing both global tissue architecture and local multicellular neighborhoods. We demonstrate STHD in spatial analyses of cell type-specific gene expression and immune interaction hubs in tumor microenvironment, and its generalizability across samples, tissues, and diseases.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"2 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03608-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in spatial transcriptomics technologies have enabled gene expression profiling across the transcriptome in spots with subcellular resolution, but high sparsity and dimensionality present significant computational challenges. We present STHD for probabilistic cell typing of single spots in whole-transcriptome spatial transcriptomics with high definition. With a machine learning model combining count statistics with neighbor regularization, STHD accurately predicts cell type identities of subcellular spots, revealing both global tissue architecture and local multicellular neighborhoods. We demonstrate STHD in spatial analyses of cell type-specific gene expression and immune interaction hubs in tumor microenvironment, and its generalizability across samples, tissues, and diseases.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.