Ryan Bertoli, Dengchao Cao, Olivia Tuckey, Susannah Gammell, Anthony Wokasch, Yang Jo Chung, Jason M. Foulks, Peter D. Aplan
{"title":"5-Azacytidine and decitabine induce C > G transversions in both murine and human cells","authors":"Ryan Bertoli, Dengchao Cao, Olivia Tuckey, Susannah Gammell, Anthony Wokasch, Yang Jo Chung, Jason M. Foulks, Peter D. Aplan","doi":"10.1038/s41375-025-02670-y","DOIUrl":null,"url":null,"abstract":"5-Azacytidine (5AZA) is a DNA methyltransferase inhibitor (DNMTi) used clinically to treat myelodysplastic neoplasm (MDS), and is used off-label for a number of malignancies including acute myeloid leukemia. This cytidine analog depletes intracellular DNMT1, and it has been hypothesized that DNMT1 depletion leads to hypomethylation and de-repression of methylated tumor suppressor genes. We used a pre-clinical model of MDS to investigate the efficacy of 5-azacytidine. Unexpectedly, we found an increased frequency of acute lymphoid leukemia (ALL) in 5AZA treated mice. Whole exome sequencing (WES) revealed a large number of C > G transversions in 5AZA treated mice, including genes known to be important for ALL such as Chd4, Ikzf1, and Trp53. Single base substitution (SBS) profiling revealed increased C > G mutations in the ALL cells, with a mutation signature similar to the previously described SBS39 signature. An in vitro GEMINI (Genotoxic Mutational Signature Identified After Clonal Expansion In vitro) assay recapitulated the finding of increased C > G mutations in both murine and human cell lines. Furthermore, similar GEMINI assays revealed induction of C > G mutations in cells treated with decitabine. Taken together, these findings demonstrate that azanucleosides induce C > G mutations both in vitro and in vivo, and are linked to leukemic transformation in murine cells.","PeriodicalId":18109,"journal":{"name":"Leukemia","volume":"39 9","pages":"2112-2124"},"PeriodicalIF":13.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41375-025-02670-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41375-025-02670-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
5-Azacytidine (5AZA) is a DNA methyltransferase inhibitor (DNMTi) used clinically to treat myelodysplastic neoplasm (MDS), and is used off-label for a number of malignancies including acute myeloid leukemia. This cytidine analog depletes intracellular DNMT1, and it has been hypothesized that DNMT1 depletion leads to hypomethylation and de-repression of methylated tumor suppressor genes. We used a pre-clinical model of MDS to investigate the efficacy of 5-azacytidine. Unexpectedly, we found an increased frequency of acute lymphoid leukemia (ALL) in 5AZA treated mice. Whole exome sequencing (WES) revealed a large number of C > G transversions in 5AZA treated mice, including genes known to be important for ALL such as Chd4, Ikzf1, and Trp53. Single base substitution (SBS) profiling revealed increased C > G mutations in the ALL cells, with a mutation signature similar to the previously described SBS39 signature. An in vitro GEMINI (Genotoxic Mutational Signature Identified After Clonal Expansion In vitro) assay recapitulated the finding of increased C > G mutations in both murine and human cell lines. Furthermore, similar GEMINI assays revealed induction of C > G mutations in cells treated with decitabine. Taken together, these findings demonstrate that azanucleosides induce C > G mutations both in vitro and in vivo, and are linked to leukemic transformation in murine cells.
期刊介绍:
Title: Leukemia
Journal Overview:
Publishes high-quality, peer-reviewed research
Covers all aspects of research and treatment of leukemia and allied diseases
Includes studies of normal hemopoiesis due to comparative relevance
Topics of Interest:
Oncogenes
Growth factors
Stem cells
Leukemia genomics
Cell cycle
Signal transduction
Molecular targets for therapy
And more
Content Types:
Original research articles
Reviews
Letters
Correspondence
Comments elaborating on significant advances and covering topical issues