Qianggang Ding, Zhichao Shen, Weiqiang Zhu, Bang Liu
{"title":"DASFormer: self-supervised pretraining for earthquake monitoring.","authors":"Qianggang Ding, Zhichao Shen, Weiqiang Zhu, Bang Liu","doi":"10.1007/s44267-025-00085-y","DOIUrl":null,"url":null,"abstract":"<p><p>Earthquake monitoring is a fundamental task to unravel the underlying physics of earthquakes and mitigate associated hazards for public safety. Distributed acoustic sensing, or DAS, which transforms pre-existing telecommunication cables into ultra-dense seismic networks, offers a cost-effective and scalable solution for next-generation earthquake monitoring. However, current approaches for earthquake monitoring like PhaseNet and PhaseNet-2 primarily rely on supervised learning, while manually labeled DAS data is quite limited and it is difficult to obtain more annotated datasets. In this paper, we present DASFormer, a novel self-supervised pretraining technique on DAS data with a coarse-to-fine framework that models spatial-temporal signal correlation. We treat earthquake monitoring as an anomaly detection task and demonstrate DASFormer can be directly utilized as a seismic phase detector. Experimental results demonstrate that DASFormer is effective in terms of several evaluation metrics and outperforms state-of-the-art time-series forecasting, anomaly detection, and foundation models on the unsupervised seismic detection task. We also demonstrate the potential of fine-tuning DASFormer to downstream tasks through case studies.</p>","PeriodicalId":520376,"journal":{"name":"Visual intelligence","volume":"3 1","pages":"14"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259731/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44267-025-00085-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Earthquake monitoring is a fundamental task to unravel the underlying physics of earthquakes and mitigate associated hazards for public safety. Distributed acoustic sensing, or DAS, which transforms pre-existing telecommunication cables into ultra-dense seismic networks, offers a cost-effective and scalable solution for next-generation earthquake monitoring. However, current approaches for earthquake monitoring like PhaseNet and PhaseNet-2 primarily rely on supervised learning, while manually labeled DAS data is quite limited and it is difficult to obtain more annotated datasets. In this paper, we present DASFormer, a novel self-supervised pretraining technique on DAS data with a coarse-to-fine framework that models spatial-temporal signal correlation. We treat earthquake monitoring as an anomaly detection task and demonstrate DASFormer can be directly utilized as a seismic phase detector. Experimental results demonstrate that DASFormer is effective in terms of several evaluation metrics and outperforms state-of-the-art time-series forecasting, anomaly detection, and foundation models on the unsupervised seismic detection task. We also demonstrate the potential of fine-tuning DASFormer to downstream tasks through case studies.