CanerClarity App: Enhancing Cancer Data Visualization with AI-Generated Narratives.

Preventive oncology & epidemiology Pub Date : 2025-01-01 Epub Date: 2024-12-24 DOI:10.1080/28322134.2024.2431501
Edgar Munoz, Alexander D VanHelene, Nuen Tsang Yang, Amelie G Ramirez
{"title":"CanerClarity App: Enhancing Cancer Data Visualization with AI-Generated Narratives.","authors":"Edgar Munoz, Alexander D VanHelene, Nuen Tsang Yang, Amelie G Ramirez","doi":"10.1080/28322134.2024.2431501","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Community cancer centers face challenges in accessing cancer data and communicating health information to patients and community members due to limited tools and resources. The CancerClarity app, recognized at the 2023 Catchment Area Data Conference Hackathon, addresses this need by integrating data visualization with Artificial intelligence (AI)-driven narrative generation. Converting quantitative cancer statistics to narrative descriptions using large language models (LLMs) may help cancer centers communicate complex cancer data more effectively to diverse stakeholders.</p><p><strong>Methods: </strong><i>The CancerClarity app</i> employs LLM prompting within the R Shiny web framework, sourcing data from Cancer InFocus. It offers users an interactive exploration of cancer incidence, mortality, and health determinants across U.S. counties.</p><p><strong>Results: </strong>The CancerClarity app integrates LLM via its application programming interface (API) for real-time, linguistically tailored narratives, making cancer data accessible to a broad audience. The app offers cancer centers a cost-effective solution to swiftly identify their catchment areas and assess the cancer burden within the populations they serve.</p><p><strong>Discussion: </strong>By enhancing public health decision-making through AI-driven narratives, the app underscores the critical role of effective communication in public health. Future enhancements include the integration of Retrieval Augmented Generation (RAG) for improved AI responses and evidence-based public health guidance.</p>","PeriodicalId":517381,"journal":{"name":"Preventive oncology & epidemiology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preventive oncology & epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/28322134.2024.2431501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Community cancer centers face challenges in accessing cancer data and communicating health information to patients and community members due to limited tools and resources. The CancerClarity app, recognized at the 2023 Catchment Area Data Conference Hackathon, addresses this need by integrating data visualization with Artificial intelligence (AI)-driven narrative generation. Converting quantitative cancer statistics to narrative descriptions using large language models (LLMs) may help cancer centers communicate complex cancer data more effectively to diverse stakeholders.

Methods: The CancerClarity app employs LLM prompting within the R Shiny web framework, sourcing data from Cancer InFocus. It offers users an interactive exploration of cancer incidence, mortality, and health determinants across U.S. counties.

Results: The CancerClarity app integrates LLM via its application programming interface (API) for real-time, linguistically tailored narratives, making cancer data accessible to a broad audience. The app offers cancer centers a cost-effective solution to swiftly identify their catchment areas and assess the cancer burden within the populations they serve.

Discussion: By enhancing public health decision-making through AI-driven narratives, the app underscores the critical role of effective communication in public health. Future enhancements include the integration of Retrieval Augmented Generation (RAG) for improved AI responses and evidence-based public health guidance.

CanerClarity应用程序:通过人工智能生成的叙述增强癌症数据可视化。
背景:由于工具和资源有限,社区癌症中心在获取癌症数据和向患者和社区成员传达健康信息方面面临挑战。在2023年集水区数据会议黑客马拉松上,CancerClarity应用程序通过将数据可视化与人工智能(AI)驱动的叙事生成相结合,解决了这一需求。使用大型语言模型(llm)将定量癌症统计数据转换为叙述性描述,可能有助于癌症中心更有效地将复杂的癌症数据传达给不同的利益相关者。方法:CancerClarity应用程序在R Shiny web框架中使用LLM提示,从Cancer InFocus中获取数据。它为用户提供了一个关于美国各县癌症发病率、死亡率和健康决定因素的交互式探索。结果:CancerClarity应用程序通过其应用程序编程接口(API)集成LLM,实现实时,语言定制的叙述,使癌症数据能够被广泛的受众访问。该应用程序为癌症中心提供了一种经济有效的解决方案,可以迅速确定其集水区,并评估其服务人群的癌症负担。讨论:该应用程序通过人工智能驱动的叙述来加强公共卫生决策,强调了有效沟通在公共卫生中的关键作用。未来的增强功能包括整合检索增强生成(RAG),以改进人工智能响应和基于证据的公共卫生指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信