Amira Skeggs, Ashish Mehta, Valerie Yap, Seray B Ibrahim, Charla Rhodes, James J Gross, Sean A Munson, Predrag Klasnja, Amy Orben, Petr Slovak
{"title":"Micro-narratives: A Scalable Method for Eliciting Stories of People's Lived Experience.","authors":"Amira Skeggs, Ashish Mehta, Valerie Yap, Seray B Ibrahim, Charla Rhodes, James J Gross, Sean A Munson, Predrag Klasnja, Amy Orben, Petr Slovak","doi":"10.1145/3706598.3713999","DOIUrl":null,"url":null,"abstract":"<p><p>Engaging with people's lived experiences is foundational for HCI research and design. This paper introduces a novel narrative elicitation method to empower people to easily articulate 'micro-narratives' emerging from their lived experiences, irrespective of their writing ability or background. Our approach aims to enable at-scale collection of rich, co-created datasets that highlight target populations' voices with minimal participant burden, while precisely addressing specific research questions. To pilot this idea, and test its feasibility, we: (i) developed an AI-powered prototype, which leverages LLM-chaining to scaffold the cognitive steps necessary for users' narrative articulation; (ii) deployed it in three mixed-methods studies involving over 380 users; and (iii) consulted with established academics as well as C-level staff at (inter)national non-profits to map out potential applications. Both qualitative and quantitative findings show the acceptability and promise of the micro-narrative method, while also identifying the ethical and safeguarding considerations necessary for any at-scale deployments.</p>","PeriodicalId":74552,"journal":{"name":"Proceedings of the SIGCHI conference on human factors in computing systems. CHI Conference","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265993/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCHI conference on human factors in computing systems. CHI Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3706598.3713999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Engaging with people's lived experiences is foundational for HCI research and design. This paper introduces a novel narrative elicitation method to empower people to easily articulate 'micro-narratives' emerging from their lived experiences, irrespective of their writing ability or background. Our approach aims to enable at-scale collection of rich, co-created datasets that highlight target populations' voices with minimal participant burden, while precisely addressing specific research questions. To pilot this idea, and test its feasibility, we: (i) developed an AI-powered prototype, which leverages LLM-chaining to scaffold the cognitive steps necessary for users' narrative articulation; (ii) deployed it in three mixed-methods studies involving over 380 users; and (iii) consulted with established academics as well as C-level staff at (inter)national non-profits to map out potential applications. Both qualitative and quantitative findings show the acceptability and promise of the micro-narrative method, while also identifying the ethical and safeguarding considerations necessary for any at-scale deployments.