GenoPath: a pipeline to infer tumor clone composition, mutational history, and metastatic cell migration events from tumor DNA sequencing data.

IF 3.9 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2025-07-02 eCollection Date: 2025-01-01 DOI:10.3389/fbinf.2025.1615834
Ryan M Tobin, Shikha Singh, Sudhir Kumar, Sayaka Miura
{"title":"GenoPath: a pipeline to infer tumor clone composition, mutational history, and metastatic cell migration events from tumor DNA sequencing data.","authors":"Ryan M Tobin, Shikha Singh, Sudhir Kumar, Sayaka Miura","doi":"10.3389/fbinf.2025.1615834","DOIUrl":null,"url":null,"abstract":"<p><p>DNA sequencing technologies are widely used to study tumor evolution within a cancer patient. However, analyses require various computational methods, including those to infer clone sequences (genotypes of cancer cell populations), clone frequencies within each tumor sample, clone phylogeny, mutational tree, dynamics of mutational signatures, and metastatic cell migration events. Therefore, we developed GenoPath, a streamlined pipeline of existing tools to perform tumor evolution analysis. We also developed and added tools to visualize results to assist interpretation and derive biological insights. We have illustrated GenoPath's utility through a case study of tumor evolution using metastatic prostate cancer data. By reducing computational barriers, GenoPath broadens access to tumor evolution analysis. The software is available at https://github.com/SayakaMiura/GP.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1615834"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1615834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA sequencing technologies are widely used to study tumor evolution within a cancer patient. However, analyses require various computational methods, including those to infer clone sequences (genotypes of cancer cell populations), clone frequencies within each tumor sample, clone phylogeny, mutational tree, dynamics of mutational signatures, and metastatic cell migration events. Therefore, we developed GenoPath, a streamlined pipeline of existing tools to perform tumor evolution analysis. We also developed and added tools to visualize results to assist interpretation and derive biological insights. We have illustrated GenoPath's utility through a case study of tumor evolution using metastatic prostate cancer data. By reducing computational barriers, GenoPath broadens access to tumor evolution analysis. The software is available at https://github.com/SayakaMiura/GP.

Abstract Image

Abstract Image

Abstract Image

GenoPath:一个从肿瘤DNA测序数据推断肿瘤克隆组成、突变历史和转移细胞迁移事件的管道。
DNA测序技术被广泛用于研究癌症患者体内的肿瘤演变。然而,分析需要各种计算方法,包括推断克隆序列(癌细胞群体的基因型)、每个肿瘤样本中的克隆频率、克隆系统发育、突变树、突变特征的动力学和转移性细胞迁移事件。因此,我们开发了GenoPath,这是一种简化的现有工具管道,用于进行肿瘤进化分析。我们还开发并增加了可视化结果的工具,以协助解释和获得生物学见解。我们已经说明了GenoPath的效用通过一个案例研究肿瘤演变使用转移性前列腺癌的数据。通过减少计算障碍,GenoPath拓宽了肿瘤进化分析的途径。该软件可在https://github.com/SayakaMiura/GP上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信