{"title":"SAID-Net: enhancing segment anything model with implicit decoding for echocardiography sequences segmentation.","authors":"Yagang Wu, Tianli Zhao, Shijun Hu, Qin Wu, Xin Huang, Yingxu Chen, Pengzhi Yin, Zhoushun Zheng","doi":"10.1007/s11517-025-03419-6","DOIUrl":null,"url":null,"abstract":"<p><p>Echocardiography sequence segmentation is vital in modern cardiology. While the Segment Anything Model (SAM) excels in general segmentation, its direct use in echocardiography faces challenges due to complex cardiac anatomy and subtle ultrasound boundaries. We introduce SAID (Segment Anything with Implicit Decoding), a novel framework integrating implicit neural representations (INR) with SAM to enhance accuracy, adaptability, and robustness. SAID employs a Hiera-based encoder for multi-scale feature extraction and a Mask Unit Attention Decoder for fine detail capture, critical for cardiac delineation. Orthogonalization boosts feature diversity, and I <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> Net improves handling of misaligned contextual features. Tested on CAMUS and EchoNet-Dynamics datasets, SAID outperforms state-of-the-art methods, achieving a Dice Similarity Coefficient (DSC) of 93.2% and Hausdorff Distance (HD95) of 5.02 mm on CAMUS, and a DSC of 92.3% and HD95 of 4.05 mm on EchoNet-Dynamics, confirming its efficacy and robustness for echocardiography sequence segmentation.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03419-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Echocardiography sequence segmentation is vital in modern cardiology. While the Segment Anything Model (SAM) excels in general segmentation, its direct use in echocardiography faces challenges due to complex cardiac anatomy and subtle ultrasound boundaries. We introduce SAID (Segment Anything with Implicit Decoding), a novel framework integrating implicit neural representations (INR) with SAM to enhance accuracy, adaptability, and robustness. SAID employs a Hiera-based encoder for multi-scale feature extraction and a Mask Unit Attention Decoder for fine detail capture, critical for cardiac delineation. Orthogonalization boosts feature diversity, and I Net improves handling of misaligned contextual features. Tested on CAMUS and EchoNet-Dynamics datasets, SAID outperforms state-of-the-art methods, achieving a Dice Similarity Coefficient (DSC) of 93.2% and Hausdorff Distance (HD95) of 5.02 mm on CAMUS, and a DSC of 92.3% and HD95 of 4.05 mm on EchoNet-Dynamics, confirming its efficacy and robustness for echocardiography sequence segmentation.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).