SAID-Net: enhancing segment anything model with implicit decoding for echocardiography sequences segmentation.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yagang Wu, Tianli Zhao, Shijun Hu, Qin Wu, Xin Huang, Yingxu Chen, Pengzhi Yin, Zhoushun Zheng
{"title":"SAID-Net: enhancing segment anything model with implicit decoding for echocardiography sequences segmentation.","authors":"Yagang Wu, Tianli Zhao, Shijun Hu, Qin Wu, Xin Huang, Yingxu Chen, Pengzhi Yin, Zhoushun Zheng","doi":"10.1007/s11517-025-03419-6","DOIUrl":null,"url":null,"abstract":"<p><p>Echocardiography sequence segmentation is vital in modern cardiology. While the Segment Anything Model (SAM) excels in general segmentation, its direct use in echocardiography faces challenges due to complex cardiac anatomy and subtle ultrasound boundaries. We introduce SAID (Segment Anything with Implicit Decoding), a novel framework integrating implicit neural representations (INR) with SAM to enhance accuracy, adaptability, and robustness. SAID employs a Hiera-based encoder for multi-scale feature extraction and a Mask Unit Attention Decoder for fine detail capture, critical for cardiac delineation. Orthogonalization boosts feature diversity, and I <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> Net improves handling of misaligned contextual features. Tested on CAMUS and EchoNet-Dynamics datasets, SAID outperforms state-of-the-art methods, achieving a Dice Similarity Coefficient (DSC) of 93.2% and Hausdorff Distance (HD95) of 5.02 mm on CAMUS, and a DSC of 92.3% and HD95 of 4.05 mm on EchoNet-Dynamics, confirming its efficacy and robustness for echocardiography sequence segmentation.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03419-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Echocardiography sequence segmentation is vital in modern cardiology. While the Segment Anything Model (SAM) excels in general segmentation, its direct use in echocardiography faces challenges due to complex cardiac anatomy and subtle ultrasound boundaries. We introduce SAID (Segment Anything with Implicit Decoding), a novel framework integrating implicit neural representations (INR) with SAM to enhance accuracy, adaptability, and robustness. SAID employs a Hiera-based encoder for multi-scale feature extraction and a Mask Unit Attention Decoder for fine detail capture, critical for cardiac delineation. Orthogonalization boosts feature diversity, and I 2 Net improves handling of misaligned contextual features. Tested on CAMUS and EchoNet-Dynamics datasets, SAID outperforms state-of-the-art methods, achieving a Dice Similarity Coefficient (DSC) of 93.2% and Hausdorff Distance (HD95) of 5.02 mm on CAMUS, and a DSC of 92.3% and HD95 of 4.05 mm on EchoNet-Dynamics, confirming its efficacy and robustness for echocardiography sequence segmentation.

基于隐式解码的超声心动图序列分割增强片段任意模型。
超声心动图序列分割是现代心脏病学研究的重要内容。尽管分段任意模型(SAM)在一般分割方面表现出色,但由于心脏解剖结构复杂和超声边界微妙,其在超声心动图中的直接应用面临挑战。我们引入了一种新的框架,将隐式神经表征(INR)与SAM相结合,以提高准确性、适应性和鲁棒性。SAID采用基于层次的编码器进行多尺度特征提取,并采用掩模单元注意解码器进行精细细节捕获,这对心脏描绘至关重要。正交化提高了特征的多样性,i2net改进了对不对齐的上下文特征的处理。在CAMUS和EchoNet-Dynamics数据集上测试,SAID优于最先进的方法,在CAMUS上实现了93.2%的Dice Similarity Coefficient (DSC)和5.02 mm的Hausdorff Distance (HD95),在EchoNet-Dynamics上实现了92.3%的DSC和4.05 mm的HD95,证实了其在超声心动图序列分割方面的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信