The Second Skin: A Wearable Sensor Suite that Enables Real-Time Human Biomechanics Tracking Through Deep Learning.

IF 4.5 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Ryan T F Casey, Christoph P O Nuesslein, Felicia Davenport, Jason Wheeler, Anirban Mazumdar, Gregory Sawicki, Aaron J Young
{"title":"The Second Skin: A Wearable Sensor Suite that Enables Real-Time Human Biomechanics Tracking Through Deep Learning.","authors":"Ryan T F Casey, Christoph P O Nuesslein, Felicia Davenport, Jason Wheeler, Anirban Mazumdar, Gregory Sawicki, Aaron J Young","doi":"10.1109/TBME.2025.3589996","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Real-time determination of human kinematics and kinetics could advance biomechanics research and enable valuable applications of biofeedback and generalizable exoskeleton control. This work aims to investigate a taskindependent, user-independent method for obtaining precise realtime joint state estimation across lower-body joints during a wide variety of tasks.</p><p><strong>Methods: </strong>We developed a generalizable sensing approach using a suit comprised of inertial measurement units (IMUs) and pressure insoles. With the suit, we collected a dataset of 33 tasks commonly performed during construction and hazardous waste cleanup (N = 10). We then trained deep learning user-independent, task-agnostic models to estimate joint lowerbody kinematics and dynamics using only worn sensor data. We likewise computed joint kinematics and dynamics analytically from sensor data to serve as a comparison tool for model results.</p><p><strong>Results: </strong>Our models achieved overall angle estimation root-meansquared-errors (RMSE) of 6.56±.92°, 8.60±1.01°, 7.58±.89°, and 6.00±.73° compared to 13.9±.1.3°, 15.31±1.0°, 10.76±.70°, and 7.56±.48° via analytical methods at the lower back, hip, knee, and ankle, respectively. Likewise, our models achieved overall normalized moment estimation RMSEs of .207±.069 Nm/kg, .242±.044 Nm/kg, .202±.038 Nm/kg, and .193±.034 Nm/kg compared to .306±.036 Nm/kg, .407±.021 Nm/kg, 1.18 ±.022 Nm/kg, and 1.73±.071 Nm/kg via analytical methods at the lower back, hip, knee, and ankle, respectively.</p><p><strong>Conclusion: </strong>These results are comparable to other state-of-the-art wearable sensing systems, establishing deep learning as a viable sensing approach that generalizes to new users and tasks.</p><p><strong>Significance: </strong>This work shows promise for enabling accurate real-world biomechanical data collection and enhancement of biofeedback systems and wearable robot control.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3589996","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Real-time determination of human kinematics and kinetics could advance biomechanics research and enable valuable applications of biofeedback and generalizable exoskeleton control. This work aims to investigate a taskindependent, user-independent method for obtaining precise realtime joint state estimation across lower-body joints during a wide variety of tasks.

Methods: We developed a generalizable sensing approach using a suit comprised of inertial measurement units (IMUs) and pressure insoles. With the suit, we collected a dataset of 33 tasks commonly performed during construction and hazardous waste cleanup (N = 10). We then trained deep learning user-independent, task-agnostic models to estimate joint lowerbody kinematics and dynamics using only worn sensor data. We likewise computed joint kinematics and dynamics analytically from sensor data to serve as a comparison tool for model results.

Results: Our models achieved overall angle estimation root-meansquared-errors (RMSE) of 6.56±.92°, 8.60±1.01°, 7.58±.89°, and 6.00±.73° compared to 13.9±.1.3°, 15.31±1.0°, 10.76±.70°, and 7.56±.48° via analytical methods at the lower back, hip, knee, and ankle, respectively. Likewise, our models achieved overall normalized moment estimation RMSEs of .207±.069 Nm/kg, .242±.044 Nm/kg, .202±.038 Nm/kg, and .193±.034 Nm/kg compared to .306±.036 Nm/kg, .407±.021 Nm/kg, 1.18 ±.022 Nm/kg, and 1.73±.071 Nm/kg via analytical methods at the lower back, hip, knee, and ankle, respectively.

Conclusion: These results are comparable to other state-of-the-art wearable sensing systems, establishing deep learning as a viable sensing approach that generalizes to new users and tasks.

Significance: This work shows promise for enabling accurate real-world biomechanical data collection and enhancement of biofeedback systems and wearable robot control.

第二层皮肤:可穿戴传感器套件,通过深度学习实现实时人体生物力学跟踪。
目的:实时测定人体运动学和动力学可以促进生物力学研究,使生物反馈和通用外骨骼控制有价值的应用。这项工作旨在研究一种独立于任务、独立于用户的方法,用于在各种任务中获得跨下半身关节的精确实时关节状态估计。方法:我们开发了一种通用的传感方法,使用由惯性测量单元(imu)和压力鞋垫组成的套装。使用这套套装,我们收集了33个在建筑和危险废物清理过程中通常执行的任务的数据集(N = 10)。然后,我们训练了与用户无关、任务无关的深度学习模型,仅使用磨损传感器数据来估计关节下体运动学和动力学。同样,我们从传感器数据中分析计算了关节运动学和动力学,作为模型结果的比较工具。结果:我们的模型获得了总体角度估计的均方根误差(RMSE)为6.56±。92°,8.60±1.01°,7.58±。89°和6.00±。分别为13.9±0.1.3°,15.31±1.0°,10.76±。70°,7.56±。48°通过分析方法分别在下背部、髋关节、膝关节和踝关节处。同样,我们的模型实现了总体归一化矩估计rmse为0.207±0.069Nm /公斤,.242±.044Nm /公斤,.202±.038Nm/kg, 0.193±0.034Nm/kg比0.306±0.036Nm /公斤,.407±.021Nm/kg, 1.18±0.022Nm/kg, 1.73±0.071Nm/kg通过分析方法分别在下背部,臀部,膝盖和脚踝处。结论:这些结果可与其他最先进的可穿戴传感系统相媲美,将深度学习作为一种可行的传感方法推广到新用户和新任务中。意义:这项工作显示了实现准确的现实世界生物力学数据收集和增强生物反馈系统和可穿戴机器人控制的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信