Decoding protein phosphorylation during oocyte meiotic divisions using phosphoproteomics.

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2025-07-17 DOI:10.7554/eLife.104255
Leonid Peshkin, Enrico Maria Daldello, Elizabeth S Van Itallie, Matthew Sonnett, Johannes Kreuzer, Wilhelm Haas, Marc W Kirschner, Catherine Jessus
{"title":"Decoding protein phosphorylation during oocyte meiotic divisions using phosphoproteomics.","authors":"Leonid Peshkin, Enrico Maria Daldello, Elizabeth S Van Itallie, Matthew Sonnett, Johannes Kreuzer, Wilhelm Haas, Marc W Kirschner, Catherine Jessus","doi":"10.7554/eLife.104255","DOIUrl":null,"url":null,"abstract":"<p><p>Oocyte meiotic divisions represent a critical process in sexual reproduction, as a diploid non-dividing oocyte is transformed into a haploid fertilizable egg, as a prelude for the subsequent embryonic divisions and differentiation. Although cell differentiation and proliferation are governed by transcription, oocyte maturation and early embryonic divisions depend entirely on changes in protein abundance and post-translational modifications. Here, we analyze the abundance and phosphorylation of proteins during <i>Xenopus</i> oocyte meiotic maturation. We reveal significant shifts in protein stability, related to spindle assembly, DNA replication, and RNA-binding. Our analysis pinpoints broad changes in phosphorylation correlating with key cytological meiotic milestones, noteworthy changes in membrane trafficking, nuclear envelope disassembly, and modifications in microtubule dynamics. Additionally, specific phosphorylation events target regulators of protein translation, Cdk1 and the Mos/MAPK pathway, thereby providing insight into the dynamics of Cdk1 activity, as related to the meiotic cell cycle. This study sheds light on the orchestration of protein dynamics and phosphorylation events during oocyte meiotic divisions, providing a rich resource for understanding the molecular pathways orchestrating meiotic progression in the frog, and most likely applicable to other vertebrate species.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.104255","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Oocyte meiotic divisions represent a critical process in sexual reproduction, as a diploid non-dividing oocyte is transformed into a haploid fertilizable egg, as a prelude for the subsequent embryonic divisions and differentiation. Although cell differentiation and proliferation are governed by transcription, oocyte maturation and early embryonic divisions depend entirely on changes in protein abundance and post-translational modifications. Here, we analyze the abundance and phosphorylation of proteins during Xenopus oocyte meiotic maturation. We reveal significant shifts in protein stability, related to spindle assembly, DNA replication, and RNA-binding. Our analysis pinpoints broad changes in phosphorylation correlating with key cytological meiotic milestones, noteworthy changes in membrane trafficking, nuclear envelope disassembly, and modifications in microtubule dynamics. Additionally, specific phosphorylation events target regulators of protein translation, Cdk1 and the Mos/MAPK pathway, thereby providing insight into the dynamics of Cdk1 activity, as related to the meiotic cell cycle. This study sheds light on the orchestration of protein dynamics and phosphorylation events during oocyte meiotic divisions, providing a rich resource for understanding the molecular pathways orchestrating meiotic progression in the frog, and most likely applicable to other vertebrate species.

利用磷酸化蛋白质组学解码卵母细胞减数分裂过程中的蛋白磷酸化。
卵母细胞减数分裂是有性生殖的一个关键过程,二倍体不分裂的卵母细胞转化为单倍体可受精卵,为随后的胚胎分裂和分化做铺垫。虽然细胞分化和增殖受转录控制,但卵母细胞成熟和早期胚胎分裂完全取决于蛋白质丰度和翻译后修饰的变化。在这里,我们分析了非洲爪蟾卵母细胞减数分裂成熟过程中蛋白质的丰度和磷酸化。我们揭示了蛋白质稳定性的显著变化,与纺锤体组装、DNA复制和rna结合有关。我们的分析精确地指出了与关键细胞学减数分裂里程碑相关的磷酸化的广泛变化,值得注意的膜运输变化,核膜分解和微管动力学的修饰。此外,特异性磷酸化事件针对蛋白翻译、Cdk1和Mos/MAPK通路的调节因子,从而深入了解与减数分裂细胞周期相关的Cdk1活性动态。这项研究揭示了卵母细胞减数分裂过程中蛋白质动力学和磷酸化事件的协调,为理解青蛙减数分裂过程的分子途径提供了丰富的资源,并且很可能适用于其他脊椎动物物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信