Modeling of a population-based input function (PBIF) using the Feng model in dynamic ⁶⁸Ga-DOTATOC whole body PET/CT scans: feasibility of shortened imaging protocols on PET/CT Vision 600 system ®.

IF 3.2 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Thomas Godefroy, Mathieu Pavoine, David Bourhis, Romain Le Pennec, Kevin Kerleguer, Romain Floch, Pierre-Yves Salaün, Nicolas Karakatsanis, Philippe Thuillier, Ronan Abgral
{"title":"Modeling of a population-based input function (PBIF) using the Feng model in dynamic ⁶⁸Ga-DOTATOC whole body PET/CT scans: feasibility of shortened imaging protocols on PET/CT Vision 600 system <sup>®</sup>.","authors":"Thomas Godefroy, Mathieu Pavoine, David Bourhis, Romain Le Pennec, Kevin Kerleguer, Romain Floch, Pierre-Yves Salaün, Nicolas Karakatsanis, Philippe Thuillier, Ronan Abgral","doi":"10.1186/s40658-025-00773-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study focuses on modeling a population-based input function (PBIF) in dynamic ⁶⁸Ga-DOTATOC PET/CT exams, with the aim of developing clinically adoptable protocols. The PBIF is derived from an image-derived input function (IDIF), ensuring a non-invasive and standardized approach to tracer kinetic modeling.</p><p><strong>Methods: </strong>Patients with well-differentiated neuroendocrine tumors were included from the GAPETNET clinical trial (n = 37), divided into a PBIF modeling group (n = 20) and an independent validation group (n = 17). Dynamic whole-body (dWB) PET/CT imaging was performed using a Vision 600 PET/CT system. A population-based input function (PBIF) was modeled using the Feng approach and scaled to individual patient-specific IDIFs over two different time windows (sPBIF<sub>3 - 7</sub>: 25-55 min, sPBIF<sub>5 - 7</sub>: 40-55 min). The scaled PBIF was normalized to IDIF data from 6 to 55 min post-injection. A full individual patient-specific IDIF using data from 0 to 70 min post-injectionwas used as the reference for AUC and Ki comparisons. IDIFs and scaled PBIFs were compared by assessing the area under the curve (AUC) and radiotracer influx rate (Ki). Linear correlation and Bland-Altman analyses were conducted for AUC and Ki comparisons. Additionally, Mann-Whitney tests were performed to compare Ki values obtained with IDIF and sPBIF in both tumoral lesions and physiological organs.</p><p><strong>Results: </strong>The lowest mean relative AUC bias was observed with sPBIF<sub>3 - 7</sub>, calculated to be 2.7 ± 7.9%, and was slightly higher with sPBIF<sub>5 - 7</sub> (7.35 ± 8.58%). The correlation coefficient (R²) with the sPBIFs was high, with a minimum of 0.95 for the sPBIF<sub>5 - 7</sub>. When analyzing K<sub>i</sub> metrics, biases tended to be lower with the 40-55 min time window (Mean ± SD bias = 1.61 ± 3.33 for K<sub>i max</sub> and 1.64 ± 2.96 for K<sub>i mean</sub>). No significant differences in K<sub>i</sub> values was observed with the sPBIFs compared to the IDIF (p > 0.05), for either tumoral lesion or physiological organs.</p><p><strong>Conclusion: </strong>Our study has demonstrated the feasibility the PBIF approach to estimate tumor or physiological Ki values from a shortened dWB ⁶⁸Ga-DOTATOC PET acquisition, using the Feng model.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"12 1","pages":"70"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-025-00773-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study focuses on modeling a population-based input function (PBIF) in dynamic ⁶⁸Ga-DOTATOC PET/CT exams, with the aim of developing clinically adoptable protocols. The PBIF is derived from an image-derived input function (IDIF), ensuring a non-invasive and standardized approach to tracer kinetic modeling.

Methods: Patients with well-differentiated neuroendocrine tumors were included from the GAPETNET clinical trial (n = 37), divided into a PBIF modeling group (n = 20) and an independent validation group (n = 17). Dynamic whole-body (dWB) PET/CT imaging was performed using a Vision 600 PET/CT system. A population-based input function (PBIF) was modeled using the Feng approach and scaled to individual patient-specific IDIFs over two different time windows (sPBIF3 - 7: 25-55 min, sPBIF5 - 7: 40-55 min). The scaled PBIF was normalized to IDIF data from 6 to 55 min post-injection. A full individual patient-specific IDIF using data from 0 to 70 min post-injectionwas used as the reference for AUC and Ki comparisons. IDIFs and scaled PBIFs were compared by assessing the area under the curve (AUC) and radiotracer influx rate (Ki). Linear correlation and Bland-Altman analyses were conducted for AUC and Ki comparisons. Additionally, Mann-Whitney tests were performed to compare Ki values obtained with IDIF and sPBIF in both tumoral lesions and physiological organs.

Results: The lowest mean relative AUC bias was observed with sPBIF3 - 7, calculated to be 2.7 ± 7.9%, and was slightly higher with sPBIF5 - 7 (7.35 ± 8.58%). The correlation coefficient (R²) with the sPBIFs was high, with a minimum of 0.95 for the sPBIF5 - 7. When analyzing Ki metrics, biases tended to be lower with the 40-55 min time window (Mean ± SD bias = 1.61 ± 3.33 for Ki max and 1.64 ± 2.96 for Ki mean). No significant differences in Ki values was observed with the sPBIFs compared to the IDIF (p > 0.05), for either tumoral lesion or physiological organs.

Conclusion: Our study has demonstrated the feasibility the PBIF approach to estimate tumor or physiological Ki values from a shortened dWB ⁶⁸Ga-DOTATOC PET acquisition, using the Feng model.

Abstract Image

Abstract Image

Abstract Image

动态26⁸Ga-DOTATOC全身PET/CT扫描中基于种群的输入函数(PBIF)的Feng模型建模:PET/CT Vision 600系统®上缩短成像方案的可行性。
背景:本研究的重点是在动态26⁸Ga-DOTATOC PET/CT检查中建立基于种群的输入函数(PBIF)模型,旨在制定临床可采用的方案。PBIF来源于图像衍生输入函数(IDIF),确保了示踪剂动力学建模的非侵入性和标准化方法。方法:选择GAPETNET临床试验中分化良好的神经内分泌肿瘤患者(n = 37),分为PBIF建模组(n = 20)和独立验证组(n = 17)。采用Vision 600 PET/CT系统进行动态全身(dWB) PET/CT成像。基于人群的输入函数(PBIF)使用Feng方法建模,并在两个不同的时间窗口(sPBIF3 - 7:25 -55分钟,sPBIF5 - 7:40 -55分钟)内缩放到个体患者特异性idif。在注射后6至55分钟,将缩放后的PBIF归一化为IDIF数据。使用注射后0至70分钟的完整个体患者特异性IDIF数据作为AUC和Ki比较的参考。通过评估曲线下面积(AUC)和放射性示踪剂内流率(Ki)来比较idif和缩放后的pifs。AUC和Ki比较采用线性相关分析和Bland-Altman分析。此外,还进行了Mann-Whitney试验来比较用IDIF和sPBIF在肿瘤病变和生理器官中获得的Ki值。结果:sPBIF3 - 7的平均相对AUC偏差最小,为2.7±7.9%,sPBIF5 - 7的平均相对AUC偏差略高(7.35±8.58%)。sPBIF5 - 7与sPBIFs的相关系数(R²)较高,最小值为0.95。当分析Ki指标时,偏差倾向于在40-55分钟的时间窗内降低(Ki max的Mean±SD偏差= 1.61±3.33,Ki Mean的Mean偏差= 1.64±2.96)。无论是肿瘤病变还是生理器官,spifs的Ki值与IDIF相比均无显著差异(p < 0.05)。结论:我们的研究证明了PBIF方法在使用Feng模型从缩短的dWB⁶⁸Ga-DOTATOC PET采集中估计肿瘤或生理Ki值的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EJNMMI Physics
EJNMMI Physics Physics and Astronomy-Radiation
CiteScore
6.70
自引率
10.00%
发文量
78
审稿时长
13 weeks
期刊介绍: EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信