Cardiac Troponin C E135A Variant Impairs Myofilament Response to PKA Phosphorylation and Is Associated With Autosomal Dominant Dilated Cardiomyopathy With Diastolic Dysfunction.

IF 6 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Maicon Landim-Vieira, Robin M Perelli, Michelle Rodriguez-Garcia, Vivek P Jani, Ronnie C Chastain, Joshua H Lamar, Ellen Mines, Gwimoon Seo, Aurelia Araujo Fernandes, Bjorn Knollmann, Michael P Carboni, Stephen P Chelko, Vitold E Galkin, P Bryant Chase, Jose Renato Pinto, Andrew P Landstrom
{"title":"Cardiac Troponin C E135A Variant Impairs Myofilament Response to PKA Phosphorylation and Is Associated With Autosomal Dominant Dilated Cardiomyopathy With Diastolic Dysfunction.","authors":"Maicon Landim-Vieira, Robin M Perelli, Michelle Rodriguez-Garcia, Vivek P Jani, Ronnie C Chastain, Joshua H Lamar, Ellen Mines, Gwimoon Seo, Aurelia Araujo Fernandes, Bjorn Knollmann, Michael P Carboni, Stephen P Chelko, Vitold E Galkin, P Bryant Chase, Jose Renato Pinto, Andrew P Landstrom","doi":"10.1161/CIRCGEN.124.004720","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dilated cardiomyopathy (DCM) is a heart muscle disease in which the left ventricle is enlarged, resulting in systolic dysfunction. Pathogenic variants in genes encoding proteins involved in cardiac contractility, cytoskeleton structure, and Ca<sup>2+</sup> handling have been associated with DCM. <i>TNNC1</i> (cTnC [cardiac troponin C]) variants are implicated in DCM, hypertrophic, and restrictive cardiomyopathies. Unlike other sarcomere genes, most reports of <i>TNNC1</i> variants lack segregation or pedigree data, partly because the majority of the variants described, to date, have been reported as de novo. Therefore, a critical need is warranted to further understand the mechanisms by which <i>TNNC1</i> variants could impact myofilament function, especially in response to PKA (protein kinase A)-mediated phosphorylation as this posttranslational modification modulates sarcomere function in response to β-adrenergic stimulation.</p><p><strong>Methods: </strong>Probands with the novel <i>TNNC1</i>-c.404A>C variant (cTnC-E135A) and family members were identified and consented. cTnC-depleted donor human cardiac muscle preparations were reconstituted with recombinant exogenous human cTnC-E135A. Steady-state isometric force and crossbridge kinetics were measured before and after PKA incubation. We used in silico modeling to further investigate crossbridge cycling kinetics.</p><p><strong>Results: </strong>We identified a multigenerational family carrying the <i>TNNC1</i>-c.404A>C variant with autosomal dominant DCM with both systolic and diastolic dysfunctions. Using reconstituted human cardiac muscle preparations, we showed that the cTnC-E135A abolishes the myofilament response to PKA-mediated phosphorylation. Furthermore, in silico mathematical modeling showed that this variant affects crossbridge kinetics by decreasing both Ca<sup>2+</sup> <i>k</i><sub>OFF</sub>-rate constant and myosin detachment rate, which could result in increased ventricular stiffness and reduced ejection fraction.</p><p><strong>Conclusions: </strong>Our clinical and genetics data, combined with the in silico modeling and functional assays, suggest that cTnC-E135A is associated with DCM and disrupts kinetics of Ca<sup>2+</sup> and crossbridge cycling by abolishing the myofilament response to PKA phosphorylation.</p>","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e004720"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Genomic and Precision Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCGEN.124.004720","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Dilated cardiomyopathy (DCM) is a heart muscle disease in which the left ventricle is enlarged, resulting in systolic dysfunction. Pathogenic variants in genes encoding proteins involved in cardiac contractility, cytoskeleton structure, and Ca2+ handling have been associated with DCM. TNNC1 (cTnC [cardiac troponin C]) variants are implicated in DCM, hypertrophic, and restrictive cardiomyopathies. Unlike other sarcomere genes, most reports of TNNC1 variants lack segregation or pedigree data, partly because the majority of the variants described, to date, have been reported as de novo. Therefore, a critical need is warranted to further understand the mechanisms by which TNNC1 variants could impact myofilament function, especially in response to PKA (protein kinase A)-mediated phosphorylation as this posttranslational modification modulates sarcomere function in response to β-adrenergic stimulation.

Methods: Probands with the novel TNNC1-c.404A>C variant (cTnC-E135A) and family members were identified and consented. cTnC-depleted donor human cardiac muscle preparations were reconstituted with recombinant exogenous human cTnC-E135A. Steady-state isometric force and crossbridge kinetics were measured before and after PKA incubation. We used in silico modeling to further investigate crossbridge cycling kinetics.

Results: We identified a multigenerational family carrying the TNNC1-c.404A>C variant with autosomal dominant DCM with both systolic and diastolic dysfunctions. Using reconstituted human cardiac muscle preparations, we showed that the cTnC-E135A abolishes the myofilament response to PKA-mediated phosphorylation. Furthermore, in silico mathematical modeling showed that this variant affects crossbridge kinetics by decreasing both Ca2+ kOFF-rate constant and myosin detachment rate, which could result in increased ventricular stiffness and reduced ejection fraction.

Conclusions: Our clinical and genetics data, combined with the in silico modeling and functional assays, suggest that cTnC-E135A is associated with DCM and disrupts kinetics of Ca2+ and crossbridge cycling by abolishing the myofilament response to PKA phosphorylation.

心肌肌钙蛋白C E135A变异损害肌丝对PKA磷酸化的反应,并与常染色体显性扩张型心肌病伴舒张功能障碍相关
背景:扩张型心肌病(DCM)是一种心肌疾病,左心室扩大,导致收缩功能障碍。编码涉及心脏收缩性、细胞骨架结构和Ca2+处理的蛋白质的基因的致病变异与DCM有关。TNNC1 (cTnC[心肌肌钙蛋白C])变异与DCM、肥厚性和限制性心肌病有关。与其他肉瘤基因不同,大多数关于TNNC1变异的报道缺乏分离或系谱数据,部分原因是迄今为止所描述的大多数变异都是从头开始报道的。因此,迫切需要进一步了解TNNC1变异影响肌丝功能的机制,特别是对PKA(蛋白激酶a)介导的磷酸化的反应,因为这种翻译后修饰在响应β-肾上腺素能刺激时调节肌节功能。方法:先证者携带新型TNNC1-c。404A>C变异(cTnC-E135A)及其家族成员被识别并同意。用重组外源性人cTnC-E135A重组ctnc -缺失的供体人心肌制剂。测定了PKA孵育前后的稳态等距力和过桥动力学。我们使用硅模型来进一步研究过桥循环动力学。结果:我们确定了一个携带TNNC1-c的多代家族。404A >c变异伴常染色体显性DCM伴收缩期和舒张期功能障碍。使用重组的人心肌制剂,我们发现cTnC-E135A消除了肌丝对pka介导的磷酸化的反应。此外,计算机数学模型表明,这种变异通过降低Ca2+ koff速率常数和肌球蛋白脱离率来影响过桥动力学,这可能导致心室僵硬度增加和射血分数降低。结论:我们的临床和遗传学数据,结合计算机模拟和功能分析,表明cTnC-E135A与DCM有关,并通过消除肌丝对PKA磷酸化的反应来破坏Ca2+和过桥循环动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Circulation: Genomic and Precision Medicine
Circulation: Genomic and Precision Medicine Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
9.20
自引率
5.40%
发文量
144
期刊介绍: Circulation: Genomic and Precision Medicine is a distinguished journal dedicated to advancing the frontiers of cardiovascular genomics and precision medicine. It publishes a diverse array of original research articles that delve into the genetic and molecular underpinnings of cardiovascular diseases. The journal's scope is broad, encompassing studies from human subjects to laboratory models, and from in vitro experiments to computational simulations. Circulation: Genomic and Precision Medicine is committed to publishing studies that have direct relevance to human cardiovascular biology and disease, with the ultimate goal of improving patient care and outcomes. The journal serves as a platform for researchers to share their groundbreaking work, fostering collaboration and innovation in the field of cardiovascular genomics and precision medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信