Metabolic fingerprinting enables rapid, label-free histopathology in gastric cancer diagnosis and prognostic prediction.

IF 11.7 1区 医学 Q1 CELL BIOLOGY
Fei Teng, Juxiang Zhang, Yida Huang, Wei Xu, Wanshan Liu, Liming Sun, Meng Yan, Jiao Wu, Ruimin Wang, Shouzhi Yang, Lin Huang, Zhengying Gu, Haiyang Su, Xiaoyu Xu, Dingyitai Liang, Ning Ren, Chunmeng Ding, Yanyan Li, Qiongzhu Dong, Lingchuan Guo, Shaoqun Liu, Xuefei Wang, Kun Qian
{"title":"Metabolic fingerprinting enables rapid, label-free histopathology in gastric cancer diagnosis and prognostic prediction.","authors":"Fei Teng, Juxiang Zhang, Yida Huang, Wei Xu, Wanshan Liu, Liming Sun, Meng Yan, Jiao Wu, Ruimin Wang, Shouzhi Yang, Lin Huang, Zhengying Gu, Haiyang Su, Xiaoyu Xu, Dingyitai Liang, Ning Ren, Chunmeng Ding, Yanyan Li, Qiongzhu Dong, Lingchuan Guo, Shaoqun Liu, Xuefei Wang, Kun Qian","doi":"10.1016/j.xcrm.2025.102238","DOIUrl":null,"url":null,"abstract":"<p><p>Histopathological evaluation is a cornerstone of cancer identification but often involves time-consuming labeling processes (∼days per sample) and experience-dependent interpretation. Herein, we introduce a rapid (∼40 min per sample) and label-free histopathological method based on metabolic fingerprinting of tissue using nanoparticle-enhanced laser desorption/ionization mass spectrometry. Applied to gastric cancer (GC, n = 284 paired tissue), this approach distinguishes malignant from benign tissues (area under the curve [AUC] of 0.979), identifies tumor subtypes (AUC of 0.963), and assesses prognosis (p < 0.05) without specialized pathologists. External validation on 238 samples from an independent cohort confirmed its robustness. This method advances histopathological analysis, offering potential for scalable clinical use.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":"6 7","pages":"102238"},"PeriodicalIF":11.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102238","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Histopathological evaluation is a cornerstone of cancer identification but often involves time-consuming labeling processes (∼days per sample) and experience-dependent interpretation. Herein, we introduce a rapid (∼40 min per sample) and label-free histopathological method based on metabolic fingerprinting of tissue using nanoparticle-enhanced laser desorption/ionization mass spectrometry. Applied to gastric cancer (GC, n = 284 paired tissue), this approach distinguishes malignant from benign tissues (area under the curve [AUC] of 0.979), identifies tumor subtypes (AUC of 0.963), and assesses prognosis (p < 0.05) without specialized pathologists. External validation on 238 samples from an independent cohort confirmed its robustness. This method advances histopathological analysis, offering potential for scalable clinical use.

代谢指纹能够快速,无标记的组织病理学胃癌诊断和预后预测。
组织病理学评估是癌症鉴定的基石,但往往涉及耗时的标记过程(每个样本约几天)和依赖经验的解释。在此,我们介绍了一种快速(每个样品约40分钟)和无标记的组织病理学方法,该方法基于使用纳米颗粒增强激光解吸/电离质谱法对组织进行代谢指纹识别。该方法应用于胃癌(n = 284对组织),在没有专业病理学家的情况下,可区分良恶性组织(曲线下面积[AUC]为0.979),识别肿瘤亚型(AUC为0.963),评估预后(p < 0.05)。来自独立队列的238个样本的外部验证证实了其稳健性。这种方法促进了组织病理学分析,为可扩展的临床应用提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信