The EIF4EBP1 gene encoding 4EBP1 is transcriptionally upregulated by MYC and linked to shorter survival in medulloblastoma.

IF 6.1 2区 生物学 Q1 CELL BIOLOGY
Laura Hruby, Katerina Schaal, Alberto Delaidelli, Daniel Picard, Christopher Dunham, Oksana Lewandowska, Tobias Reiff, Magalie Larcher, Celio Pouponnot, Poul Hb Sorensen, Barak Rotblat, Guido Reifenberger, Marc Remke, Gabriel Leprivier
{"title":"The EIF4EBP1 gene encoding 4EBP1 is transcriptionally upregulated by MYC and linked to shorter survival in medulloblastoma.","authors":"Laura Hruby, Katerina Schaal, Alberto Delaidelli, Daniel Picard, Christopher Dunham, Oksana Lewandowska, Tobias Reiff, Magalie Larcher, Celio Pouponnot, Poul Hb Sorensen, Barak Rotblat, Guido Reifenberger, Marc Remke, Gabriel Leprivier","doi":"10.1038/s41420-025-02601-x","DOIUrl":null,"url":null,"abstract":"<p><p>Medulloblastoma (MB) is the most common malignant brain tumor in childhood and is stratified into four molecular groups ‒ Wingless and Int-1 (WNT), Sonic hedgehog (SHH), Group 3 and Group 4. Group 3 MB patients exhibit the poorest prognosis, with a 5-year overall survival of <60%, followed by Group 4 MB patients. Apart from MYC amplification in a subset of Group 3 MBs, the molecular pathomechanisms driving aggressiveness of these tumors remain incompletely characterized. The gene encoding the mTOR substrate and mRNA translation inhibitor eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) represents a possible MYC target gene whose corresponding protein, 4EBP1, was shown to be more active in Group 3 versus Group 4 MBs. However, the prognostic role of 4EBP1 in MB and the mechanisms supporting 4EBP1 overexpression in Group 3 MB are still elusive. We analyzed EIF4EBP1 mRNA expression in publicly available data sets and found an upregulation in MB as compared to non-neoblastic brain. EIF4EBP1 mRNA expression levels were higher in Group 3 compared to Group 4 MBs. EIF4EBP1 mRNA expression was correlated with MYC expression, most prominently in Group 3 MBs. Survival analyses highlighted that high EIF4EBP1 mRNA expression was associated with reduced overall and event-free survival across all MB patients and in Group 3/Group 4 MB patients. Immunohistochemical evaluation of 4EBP1 protein expression in MB tissues confirmed that high levels of 4EBP1 are associated with poor outcome. Functional analyses revealed that MYC directly regulates EIF4EBP1 promoter activity, providing a mechanism for increased EIF4EBP1 mRNA levels in Group 3 MBs. Finally, we observed that 4EBP1 may support colony formation of in vitro cultured MB cells. Our data highlight that transcriptional upregulation of EIF4EBP1 by MYC promotes in vitro tumorigenicity of MB cells and associates with shorter survival of MB patients.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"330"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02601-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Medulloblastoma (MB) is the most common malignant brain tumor in childhood and is stratified into four molecular groups ‒ Wingless and Int-1 (WNT), Sonic hedgehog (SHH), Group 3 and Group 4. Group 3 MB patients exhibit the poorest prognosis, with a 5-year overall survival of <60%, followed by Group 4 MB patients. Apart from MYC amplification in a subset of Group 3 MBs, the molecular pathomechanisms driving aggressiveness of these tumors remain incompletely characterized. The gene encoding the mTOR substrate and mRNA translation inhibitor eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) represents a possible MYC target gene whose corresponding protein, 4EBP1, was shown to be more active in Group 3 versus Group 4 MBs. However, the prognostic role of 4EBP1 in MB and the mechanisms supporting 4EBP1 overexpression in Group 3 MB are still elusive. We analyzed EIF4EBP1 mRNA expression in publicly available data sets and found an upregulation in MB as compared to non-neoblastic brain. EIF4EBP1 mRNA expression levels were higher in Group 3 compared to Group 4 MBs. EIF4EBP1 mRNA expression was correlated with MYC expression, most prominently in Group 3 MBs. Survival analyses highlighted that high EIF4EBP1 mRNA expression was associated with reduced overall and event-free survival across all MB patients and in Group 3/Group 4 MB patients. Immunohistochemical evaluation of 4EBP1 protein expression in MB tissues confirmed that high levels of 4EBP1 are associated with poor outcome. Functional analyses revealed that MYC directly regulates EIF4EBP1 promoter activity, providing a mechanism for increased EIF4EBP1 mRNA levels in Group 3 MBs. Finally, we observed that 4EBP1 may support colony formation of in vitro cultured MB cells. Our data highlight that transcriptional upregulation of EIF4EBP1 by MYC promotes in vitro tumorigenicity of MB cells and associates with shorter survival of MB patients.

编码4EBP1的EIF4EBP1基因被MYC转录上调,并与髓母细胞瘤中较短的生存期有关。
髓母细胞瘤(Medulloblastoma, MB)是儿童时期最常见的恶性脑肿瘤,可分为4个分子类群:无翼和Int-1 (WNT)、Sonic hedgehog (SHH)、第3组和第4组。组3 MB患者预后最差,5年总生存率为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信