Biomolecule-assisted synthesis of magnetic biochar from betel nut husk and iron ore tailings: characterization and arsenic elimination studies

IF 2.8 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Rutuja T Kamble, MG Sujana
{"title":"Biomolecule-assisted synthesis of magnetic biochar from betel nut husk and iron ore tailings: characterization and arsenic elimination studies","authors":"Rutuja T Kamble,&nbsp;MG Sujana","doi":"10.1002/jctb.7906","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> BACKGROUND</h3>\n \n <p>Arsenic contamination in drinking water remains a significant global public health issue, necessitating sustainable and efficient removal technologies. In this work, magnetite-biochar composites were synthesized through a green and cost-effective approach using betel nut husk-derived biochar and iron ore tailings, with <i>Hibiscus rosa sinensis</i> leaf extract serving as a natural biosurfactant and reducing agent. The synthesis plan aimed to utilize agricultural and industrial waste materials to fabricate a functionalized magnetic adsorbent with improved physicochemical properties for arsenic species elimination.</p>\n </section>\n \n <section>\n \n <h3> RESULTS</h3>\n \n <p>The optimized Fe<sub>3</sub>O<sub>4</sub>@BC composite (Fe:BC ratio = 1:2) demonstrated a substantial BET (Brunauer-Emmett-Teller) surface area of 73 m<sup>2</sup> g<sup>−1</sup>. X-ray diffraction patterns confirmed the successful formation of crystalline magnetite nanoparticles anchored to the biochar matrix. Fourier transform infrared and field emission scanning electron microscopy/energy dispersive X-ray spectroscopic analyses evidenced the presence of active functional groups and uniform magnetite dispersion on the Fe<sub>3</sub>O<sub>4</sub>@BC surface. The green synthesis route, facilitated by <i>hibiscus</i> leaf phytochemicals, contributed to improved nanoparticle stability and surface functionality, enabling efficient arsenic removal from aqueous solutions. Batch experiments confirmed maximum adsorption capacities of 42.74 and 27.62 mg g<sup>−1</sup> for arsenic(V) and arsenic(III), respectively. The material demonstrated favourable kinetics, minimal interference from coexisting ions and effective regeneration over three cycles.</p>\n </section>\n \n <section>\n \n <h3> CONCLUSION</h3>\n \n <p>The environmentally benign synthesis of Fe<sub>3</sub>O<sub>4</sub>@BC using biomass waste and mine tailings, assisted by plant-derived biomolecules, offers a low-cost, scalable and sustainable adsorbent for arsenic elimination. The material's high surface properties and promising removal performance in real water systems highlight its potential for field-scale applications in water purification. © 2025 Society of Chemical Industry (SCI).</p>\n </section>\n </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":"100 8","pages":"1724-1736"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical technology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jctb.7906","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND

Arsenic contamination in drinking water remains a significant global public health issue, necessitating sustainable and efficient removal technologies. In this work, magnetite-biochar composites were synthesized through a green and cost-effective approach using betel nut husk-derived biochar and iron ore tailings, with Hibiscus rosa sinensis leaf extract serving as a natural biosurfactant and reducing agent. The synthesis plan aimed to utilize agricultural and industrial waste materials to fabricate a functionalized magnetic adsorbent with improved physicochemical properties for arsenic species elimination.

RESULTS

The optimized Fe3O4@BC composite (Fe:BC ratio = 1:2) demonstrated a substantial BET (Brunauer-Emmett-Teller) surface area of 73 m2 g−1. X-ray diffraction patterns confirmed the successful formation of crystalline magnetite nanoparticles anchored to the biochar matrix. Fourier transform infrared and field emission scanning electron microscopy/energy dispersive X-ray spectroscopic analyses evidenced the presence of active functional groups and uniform magnetite dispersion on the Fe3O4@BC surface. The green synthesis route, facilitated by hibiscus leaf phytochemicals, contributed to improved nanoparticle stability and surface functionality, enabling efficient arsenic removal from aqueous solutions. Batch experiments confirmed maximum adsorption capacities of 42.74 and 27.62 mg g−1 for arsenic(V) and arsenic(III), respectively. The material demonstrated favourable kinetics, minimal interference from coexisting ions and effective regeneration over three cycles.

CONCLUSION

The environmentally benign synthesis of Fe3O4@BC using biomass waste and mine tailings, assisted by plant-derived biomolecules, offers a low-cost, scalable and sustainable adsorbent for arsenic elimination. The material's high surface properties and promising removal performance in real water systems highlight its potential for field-scale applications in water purification. © 2025 Society of Chemical Industry (SCI).

从槟榔壳和铁矿尾矿中合成磁性生物炭的生物分子辅助:表征和去砷研究
饮用水中的砷污染仍然是一个重大的全球公共卫生问题,需要可持续和有效的去除技术。本研究以槟榔壳生物炭和铁矿尾矿为原料,以芙蓉叶提取物为天然生物表面活性剂和还原剂,采用绿色经济的方法合成了磁铁矿-生物炭复合材料。该合成计划旨在利用农业和工业废料制备一种具有改进物理化学性质的功能化磁性吸附剂,用于消除砷物种。结果优化后的Fe3O4@BC复合材料(Fe:BC比为1:2)的BET (brunauer - emmet - teller)表面积为73 m2 g−1。x射线衍射图证实了晶体磁性纳米颗粒锚定在生物炭基质上的成功形成。傅里叶变换红外和场发射扫描电镜/能量色散x射线光谱分析证明了Fe3O4@BC表面存在活性官能团和均匀的磁铁矿分散。绿色合成路线,由芙蓉叶植物化学物质促进,有助于提高纳米颗粒的稳定性和表面功能,使砷从水溶液中有效去除。批量实验证实,对砷(V)和砷(III)的最大吸附量分别为42.74和27.62 mg g−1。该材料表现出良好的动力学,共存离子的干扰最小,在三个循环中有效再生。结论利用生物质废弃物和矿山尾矿,在植物源性生物分子的辅助下,环境友好地合成Fe3O4@BC是一种低成本、可扩展、可持续的砷去除吸附剂。该材料的高表面性能和在实际水系统中有前途的去除性能突出了其在水净化领域的应用潜力。©2025化学工业学会(SCI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
5.90%
发文量
268
审稿时长
1.7 months
期刊介绍: Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信