Katherine A. Graham, Charles F. Lawlor, Rachitha S. Reddy, Supadach Prertprawnon, Olakunle O. Akinola, Vincent J. Grisolia, Keshari Kunwor, Nicholas B. Borotto
{"title":"Improved Annotation of Internal Fragments via Trapped-Ion Mobility Enhanced Top-Down Sequencing of Protein Ions","authors":"Katherine A. Graham, Charles F. Lawlor, Rachitha S. Reddy, Supadach Prertprawnon, Olakunle O. Akinola, Vincent J. Grisolia, Keshari Kunwor, Nicholas B. Borotto","doi":"10.1002/jms.5158","DOIUrl":null,"url":null,"abstract":"<p>Analysis of intact protein ions allows for valuable insights into complex biological processes. However, top-down mass spectrometry data is often convoluted and frequently results in numerous overlapping product ions. Ion mobility spectrometry (IMS) can aid in the deconvolution of these spectra, and we previously demonstrated that the IMS separations provided by trapped IMS (TIMS) significantly increased the sequence coverage provided by collision induced dissociation (CID). In this work, we further improve the “CIDtims” method by incorporating the dynamic control of ion populations, optimizing the bioinformatic approach to better leverage the mobility separation, and finally porting the technique to an improved version of the instrument, the timsTOF Pro2. Lastly, we utilize these improvements to assess internal ions generated by CIDtims. Internal ions are of particular importance in the CIDtims workflow as all charge states are simultaneously activated and the highest charge states will likely be subjected to “over fragmentation.” We demonstrate that mobility separation increases the signal-to-noise ratios and the isotopic fit scores of internal ions and enables the assignment of additional product ions.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"60 8","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5158","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jms.5158","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Analysis of intact protein ions allows for valuable insights into complex biological processes. However, top-down mass spectrometry data is often convoluted and frequently results in numerous overlapping product ions. Ion mobility spectrometry (IMS) can aid in the deconvolution of these spectra, and we previously demonstrated that the IMS separations provided by trapped IMS (TIMS) significantly increased the sequence coverage provided by collision induced dissociation (CID). In this work, we further improve the “CIDtims” method by incorporating the dynamic control of ion populations, optimizing the bioinformatic approach to better leverage the mobility separation, and finally porting the technique to an improved version of the instrument, the timsTOF Pro2. Lastly, we utilize these improvements to assess internal ions generated by CIDtims. Internal ions are of particular importance in the CIDtims workflow as all charge states are simultaneously activated and the highest charge states will likely be subjected to “over fragmentation.” We demonstrate that mobility separation increases the signal-to-noise ratios and the isotopic fit scores of internal ions and enables the assignment of additional product ions.
期刊介绍:
The Journal of Mass Spectrometry publishes papers on a broad range of topics of interest to scientists working in both fundamental and applied areas involving the study of gaseous ions.
The aim of JMS is to serve the scientific community with information provided and arranged to help senior investigators to better stay abreast of new discoveries and studies in their own field, to make them aware of events and developments in associated fields, and to provide students and newcomers the basic tools with which to learn fundamental and applied aspects of mass spectrometry.