Job van Staveren;Luc Enthoven;Peter Luka Bavdaz;Marcel Meyer;Corentin Déprez;Ville Nuutinen;Russell Lake;Davide Degli Esposti;Cornelius Carlsson;Alberto Tosato;Jiang Gong;Bagas Prabowo;Masoud Babaie;Carmen G. Almudever;Menno Veldhorst;Giordano Scappucci;Fabio Sebastiano
{"title":"Cryo-CMOS Bias-Voltage Generation and Demultiplexing at mK Temperatures for Large-Scale Arrays of Quantum Devices","authors":"Job van Staveren;Luc Enthoven;Peter Luka Bavdaz;Marcel Meyer;Corentin Déprez;Ville Nuutinen;Russell Lake;Davide Degli Esposti;Cornelius Carlsson;Alberto Tosato;Jiang Gong;Bagas Prabowo;Masoud Babaie;Carmen G. Almudever;Menno Veldhorst;Giordano Scappucci;Fabio Sebastiano","doi":"10.1109/TQE.2025.3580377","DOIUrl":null,"url":null,"abstract":"The rapidly growing number of qubits in semiconductor quantum computers requires a scalable control interface, including the efficient generation of dc bias voltages for gate electrodes. To avoid unrealistically complex wiring between any room-temperature electronics and the cryogenic qubits, this article presents an integrated cryogenic solution for the bias-voltage generation and distribution for large-scale semiconductor spin-qubit quantum processors. A dedicated cryogenic CMOS (cryo-CMOS) demultiplexer and a cryo-CMOS dc digital-to-analog converter (DAC) have been developed in a 22-nm fin field-effect transistor process to control a codeveloped 2-D array designed with 648 single-hole transistors. Thanks to the dissipation below <inline-formula><tex-math>$120 \\,\\mathrm{\\mu }\\mathrm{W}$</tex-math></inline-formula>, the whole system operates at temperatures below <inline-formula><tex-math>$70 \\,\\mathrm{m}\\mathrm{K}$</tex-math></inline-formula> in a custom-built electrical/mechanical infrastructure embedded in a standard single-pulse-tube dilution refrigerator. The bias voltages generated by the cryo-CMOS DAC are demultiplexed to sample-and-hold structures, allowing to store 96 unique bias voltages over a <inline-formula><tex-math>$3 \\,\\mathrm{V}$</tex-math></inline-formula> range with a voltage drift between <inline-formula><tex-math>$60 \\,\\mathrm{\\mu }\\mathrm{V}/ \\mathrm{s}$</tex-math></inline-formula> and <inline-formula><tex-math>$18 \\,\\mathrm{m}\\mathrm{V}/ \\mathrm{s}$</tex-math></inline-formula>. This work demonstrates a tight integration at <inline-formula><tex-math>$\\,\\mathrm{m}\\mathrm{K}$</tex-math></inline-formula> temperatures of cryo-CMOS bias generation and distribution with a dedicated large-scale quantum device. This showcases how this approach simplifies the wiring to the electronics, thus facilitating the scaling up of quantum processors toward the large number of qubits required for a practical quantum computer.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-18"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11037551","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11037551/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rapidly growing number of qubits in semiconductor quantum computers requires a scalable control interface, including the efficient generation of dc bias voltages for gate electrodes. To avoid unrealistically complex wiring between any room-temperature electronics and the cryogenic qubits, this article presents an integrated cryogenic solution for the bias-voltage generation and distribution for large-scale semiconductor spin-qubit quantum processors. A dedicated cryogenic CMOS (cryo-CMOS) demultiplexer and a cryo-CMOS dc digital-to-analog converter (DAC) have been developed in a 22-nm fin field-effect transistor process to control a codeveloped 2-D array designed with 648 single-hole transistors. Thanks to the dissipation below $120 \,\mathrm{\mu }\mathrm{W}$, the whole system operates at temperatures below $70 \,\mathrm{m}\mathrm{K}$ in a custom-built electrical/mechanical infrastructure embedded in a standard single-pulse-tube dilution refrigerator. The bias voltages generated by the cryo-CMOS DAC are demultiplexed to sample-and-hold structures, allowing to store 96 unique bias voltages over a $3 \,\mathrm{V}$ range with a voltage drift between $60 \,\mathrm{\mu }\mathrm{V}/ \mathrm{s}$ and $18 \,\mathrm{m}\mathrm{V}/ \mathrm{s}$. This work demonstrates a tight integration at $\,\mathrm{m}\mathrm{K}$ temperatures of cryo-CMOS bias generation and distribution with a dedicated large-scale quantum device. This showcases how this approach simplifies the wiring to the electronics, thus facilitating the scaling up of quantum processors toward the large number of qubits required for a practical quantum computer.