{"title":"MixLVMM: A Mixture of Lightweight Vision Mamba Model for Enhancing Skin Lesion Segmentation Across High Tone Variability","authors":"Mohamed Lamine Allaoui;Mohand Saïd Allili","doi":"10.1109/ACCESS.2025.3588476","DOIUrl":null,"url":null,"abstract":"Accurate skin lesion segmentation remains a critical challenge in automated dermatological diagnosis due to heterogeneous lesion presentations, ambiguous boundaries, imaging artifacts, and significant variability in skin and lesion tones across diverse populations. Current segmentation methods inadequately address these multifaceted complexities, particularly failing to handle extreme tone variations that can lead to diagnostic bias. To address these limitations, we present the Mixture of Lightweight Vision Mamba Model (MixLVMM), a novel expert-based framework that enhances segmentation performance across high tone variability through specialized processing. Our approach employs a Siamese network with triplet loss as a gate mechanism to categorize lesions based on tonal characteristics, routing each image to specialized Vision Mamba Model (VMM) experts optimized for specific lesion categories. Each expert utilizes a U-shaped architecture incorporating Focused Vision Mamba blocks and Adaptive Salient Region Attention modules to capture lesion-specific features while maintaining computational efficiency. Comprehensive evaluation on ISIC and PH2 datasets demonstrates that MixLVMM achieves superior segmentation performance with an average Dice coefficient of 93%, surpassing state-of-the-art methods while maintaining efficiency with only 2.5M parameters. These results establish MixLVMM as a robust solution for addressing tone-related segmentation challenges in clinical dermatology, offering both high accuracy and practical deployment feasibility for real-world applications. Additional materials and code will be available at <uri>https://github.com/MOHAMEDLamine77/MixLVMM</uri>","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"121234-121249"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11078245","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11078245/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate skin lesion segmentation remains a critical challenge in automated dermatological diagnosis due to heterogeneous lesion presentations, ambiguous boundaries, imaging artifacts, and significant variability in skin and lesion tones across diverse populations. Current segmentation methods inadequately address these multifaceted complexities, particularly failing to handle extreme tone variations that can lead to diagnostic bias. To address these limitations, we present the Mixture of Lightweight Vision Mamba Model (MixLVMM), a novel expert-based framework that enhances segmentation performance across high tone variability through specialized processing. Our approach employs a Siamese network with triplet loss as a gate mechanism to categorize lesions based on tonal characteristics, routing each image to specialized Vision Mamba Model (VMM) experts optimized for specific lesion categories. Each expert utilizes a U-shaped architecture incorporating Focused Vision Mamba blocks and Adaptive Salient Region Attention modules to capture lesion-specific features while maintaining computational efficiency. Comprehensive evaluation on ISIC and PH2 datasets demonstrates that MixLVMM achieves superior segmentation performance with an average Dice coefficient of 93%, surpassing state-of-the-art methods while maintaining efficiency with only 2.5M parameters. These results establish MixLVMM as a robust solution for addressing tone-related segmentation challenges in clinical dermatology, offering both high accuracy and practical deployment feasibility for real-world applications. Additional materials and code will be available at https://github.com/MOHAMEDLamine77/MixLVMM
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.