Christine I.B. Wallis , Anna L. Crofts , Robert Jackisch , Shan Kothari , Guillaume Tougas , J. Pablo Arroyo-Mora , Paul Hacker , Nicholas Coops , Margaret Kalacska , Etienne Laliberté , Mark Vellend
{"title":"Methodological considerations for studying spectral-plant diversity relationships","authors":"Christine I.B. Wallis , Anna L. Crofts , Robert Jackisch , Shan Kothari , Guillaume Tougas , J. Pablo Arroyo-Mora , Paul Hacker , Nicholas Coops , Margaret Kalacska , Etienne Laliberté , Mark Vellend","doi":"10.1016/j.rse.2025.114907","DOIUrl":null,"url":null,"abstract":"<div><div>The Spectral Variation Hypothesis (SVH) posits that higher spectral diversity indicates higher biodiversity, which would allow imaging spectroscopy to be used in biodiversity assessment and monitoring. However, its applicability varies due to ecological and methodological factors. Key methodological factors impacting spectral diversity metrics include spatial resolution, shadow removal, and spectral transformations. This study investigates how these methodological considerations affect the application of the SVH across ecosystems and sites. Using field and hyperspectral data from forest and open (e.g., wetland, grassland, savannah) ecosystems from five sites of the Canadian Airborne Biodiversity Observatory (CABO), we analyzed three variance-based spectral diversity metrics across and within vegetation sites, examining the effects of illumination corrections, spatial resolution, and shadow filtering on the spectral-plant functional diversity relationship. Our findings highlight that the relationship between spectral diversity metrics and functional diversity are strongly influenced by methods, especially spectral transformations. These illumination corrections notably impacted the spectral regions of importance and the resulting relationships to plant functional diversity. Depending on methodological choices, we observed correlations that varied not only in strength but also direction: in open vegetation we saw negative correlations when using brightness normalization, and positive correlations when using continuum removal. Shadow removal and spatial resolution were important but had less impact on the correlations. By systematically analyzing these methodological aspects, our study not only aims to guide researchers through potential challenges in SVH studies but also highlights the inherent sensitivity of spectral-functional diversity relationships to methodological choices. The variability and context-dependence of these relationships across and within sites emphasize the need for adaptable, site-specific approaches, presenting a key challenge in developing robust methods to enhance biodiversity monitoring and conservation strategies.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"328 ","pages":"Article 114907"},"PeriodicalIF":11.1000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725003116","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Spectral Variation Hypothesis (SVH) posits that higher spectral diversity indicates higher biodiversity, which would allow imaging spectroscopy to be used in biodiversity assessment and monitoring. However, its applicability varies due to ecological and methodological factors. Key methodological factors impacting spectral diversity metrics include spatial resolution, shadow removal, and spectral transformations. This study investigates how these methodological considerations affect the application of the SVH across ecosystems and sites. Using field and hyperspectral data from forest and open (e.g., wetland, grassland, savannah) ecosystems from five sites of the Canadian Airborne Biodiversity Observatory (CABO), we analyzed three variance-based spectral diversity metrics across and within vegetation sites, examining the effects of illumination corrections, spatial resolution, and shadow filtering on the spectral-plant functional diversity relationship. Our findings highlight that the relationship between spectral diversity metrics and functional diversity are strongly influenced by methods, especially spectral transformations. These illumination corrections notably impacted the spectral regions of importance and the resulting relationships to plant functional diversity. Depending on methodological choices, we observed correlations that varied not only in strength but also direction: in open vegetation we saw negative correlations when using brightness normalization, and positive correlations when using continuum removal. Shadow removal and spatial resolution were important but had less impact on the correlations. By systematically analyzing these methodological aspects, our study not only aims to guide researchers through potential challenges in SVH studies but also highlights the inherent sensitivity of spectral-functional diversity relationships to methodological choices. The variability and context-dependence of these relationships across and within sites emphasize the need for adaptable, site-specific approaches, presenting a key challenge in developing robust methods to enhance biodiversity monitoring and conservation strategies.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.