Optimizing breast cancer therapy: chemoressitance and machine learning for precision prediction.

Personalized medicine Pub Date : 2025-10-01 Epub Date: 2025-07-16 DOI:10.1080/17410541.2025.2532362
Martina Lichtenfels, Matheus G S Dalmolin, Julia Caroline Marcolin, Heloisa Resende, Alessandra Borba Anton de Souza, Bianca Silva Marques, Vivian Fontana, Francine Hickmann Nyland, Mário Casales Schorr, Isabela Miranda, Luiza Kobe, Camila Alves da Silva, Marcelo Ac Fernandes, Caroline Brunetto de Farias, Antônio Luiz Frasson, José Luiz Pedrini
{"title":"Optimizing breast cancer therapy: chemoressitance and machine learning for precision prediction.","authors":"Martina Lichtenfels, Matheus G S Dalmolin, Julia Caroline Marcolin, Heloisa Resende, Alessandra Borba Anton de Souza, Bianca Silva Marques, Vivian Fontana, Francine Hickmann Nyland, Mário Casales Schorr, Isabela Miranda, Luiza Kobe, Camila Alves da Silva, Marcelo Ac Fernandes, Caroline Brunetto de Farias, Antônio Luiz Frasson, José Luiz Pedrini","doi":"10.1080/17410541.2025.2532362","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Validate a novel in vitro resistance platform for breast cancer (BC) by assessing resistance profiles of treatment-naïve and residual tumors after neoadjuvant chemotherapy (NACT) and applying a machine learning algorithm to predict NACT response using clinical biomarkers.</p><p><strong>Methods: </strong>Tumor cells from primary BC and residual disease (RD) were cultured on the chemoresistance platform with various chemotherapies. Resistance was categorized as low ( < 40%), medium (40-60%), or high ( > 60%) after 72 h based on cell viability. Clinicopathological data from BC samples were analyzed using the XGBoost algorithm and SHAP interpretation to identify NACT-resistant patients.</p><p><strong>Results: </strong>Patients undergoing upfront surgery (<i>n</i> = 70) exhibited significantly favorable prognosis compared to RD cases (<i>n</i> = 27), which had higher drug resistance and worse outcomes. AI analysis of 1,012 patients achieved 82% accuracy in predicting pathological response and RD, with age, estrogen receptor status, tumor grade and size, axillary status, and HER2 status identified as key predictors. The algorithm predicted NACT resistance with 81.8% accuracy in 11 patient samples.</p><p><strong>Conclusion: </strong>The chemoresistance platform identified resistance patterns highlighting its utility in precision medicine. Additionally, the XGBoost algorithm accurately predicted NACT response, supporting the integration of AI with functional precision medicine for personalized BC treatment.</p>","PeriodicalId":94167,"journal":{"name":"Personalized medicine","volume":" ","pages":"295-304"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Personalized medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17410541.2025.2532362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Validate a novel in vitro resistance platform for breast cancer (BC) by assessing resistance profiles of treatment-naïve and residual tumors after neoadjuvant chemotherapy (NACT) and applying a machine learning algorithm to predict NACT response using clinical biomarkers.

Methods: Tumor cells from primary BC and residual disease (RD) were cultured on the chemoresistance platform with various chemotherapies. Resistance was categorized as low ( < 40%), medium (40-60%), or high ( > 60%) after 72 h based on cell viability. Clinicopathological data from BC samples were analyzed using the XGBoost algorithm and SHAP interpretation to identify NACT-resistant patients.

Results: Patients undergoing upfront surgery (n = 70) exhibited significantly favorable prognosis compared to RD cases (n = 27), which had higher drug resistance and worse outcomes. AI analysis of 1,012 patients achieved 82% accuracy in predicting pathological response and RD, with age, estrogen receptor status, tumor grade and size, axillary status, and HER2 status identified as key predictors. The algorithm predicted NACT resistance with 81.8% accuracy in 11 patient samples.

Conclusion: The chemoresistance platform identified resistance patterns highlighting its utility in precision medicine. Additionally, the XGBoost algorithm accurately predicted NACT response, supporting the integration of AI with functional precision medicine for personalized BC treatment.

优化乳腺癌治疗:精确预测的化疗和机器学习。
背景:通过评估treatment-naïve和新辅助化疗(NACT)后残留肿瘤的耐药谱,并应用机器学习算法使用临床生物标志物预测NACT反应,验证一种新的乳腺癌(BC)体外耐药平台。方法:采用不同的化疗方法,在化疗耐药平台上培养原发性BC和残留病(RD)的肿瘤细胞。72 h后,根据细胞存活率,耐药性为低(60%)。使用XGBoost算法和SHAP解释分析BC样本的临床病理数据,以确定耐药患者。结果:前期手术患者(n = 70)的预后明显优于RD患者(n = 27), RD患者耐药更高,预后更差。1012例患者的AI分析预测病理反应和RD的准确率达到82%,其中年龄、雌激素受体状态、肿瘤分级和大小、腋窝状态和HER2状态被确定为关键预测因素。该算法在11例患者样本中预测NACT耐药性的准确率为81.8%。结论:该耐药平台可识别耐药模式,在精准医疗领域具有重要应用价值。此外,XGBoost算法准确预测NACT反应,支持AI与功能精准医学的整合,实现个性化BC治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信