DCUDF2: Improving Efficiency and Accuracy in Extracting Zero Level Sets from Unsigned Distance Fields.

Xuhui Chen, Fugang Yu, Fei Hou, Wencheng Wang, Zhebin Zhang, Ying He
{"title":"DCUDF2: Improving Efficiency and Accuracy in Extracting Zero Level Sets from Unsigned Distance Fields.","authors":"Xuhui Chen, Fugang Yu, Fei Hou, Wencheng Wang, Zhebin Zhang, Ying He","doi":"10.1109/TVCG.2025.3588659","DOIUrl":null,"url":null,"abstract":"<p><p>Unsigned distance fields (UDFs) provide a flexible representation for models with complex topologies, but accurately extracting their zero level sets remains challenging, particularly in preserving topological correctness and fine geometric details. We present DCUDF2, an enhanced method that builds upon DCUDF to address these limitations. Our approach introduces an accuracy-aware loss function with self-adaptive weights, enabling precise geometric fitting while avoiding over-smoothing. To improve robustness, we propose a topology correction strategy that reduces the sensitivity to hyper-parameter settings. Furthermore, we develop new operations leveraging self-adaptive weights to accelerate convergence and improve runtime efficiency. Extensive experiments on diverse datasets demonstrate that DCUDF2 consistently outperforms DCUDF and existing methods in both geometric fidelity and topological accuracy.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3588659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unsigned distance fields (UDFs) provide a flexible representation for models with complex topologies, but accurately extracting their zero level sets remains challenging, particularly in preserving topological correctness and fine geometric details. We present DCUDF2, an enhanced method that builds upon DCUDF to address these limitations. Our approach introduces an accuracy-aware loss function with self-adaptive weights, enabling precise geometric fitting while avoiding over-smoothing. To improve robustness, we propose a topology correction strategy that reduces the sensitivity to hyper-parameter settings. Furthermore, we develop new operations leveraging self-adaptive weights to accelerate convergence and improve runtime efficiency. Extensive experiments on diverse datasets demonstrate that DCUDF2 consistently outperforms DCUDF and existing methods in both geometric fidelity and topological accuracy.

DCUDF2:提高从无符号距离域中提取零水平集的效率和准确性。
无符号距离字段(udf)为具有复杂拓扑的模型提供了一种灵活的表示,但是准确地提取它们的零水平集仍然具有挑战性,特别是在保持拓扑正确性和精细的几何细节方面。我们提出了DCUDF2,一种基于DCUDF的增强方法来解决这些限制。我们的方法引入了一个具有自适应权重的精度感知损失函数,在避免过度平滑的同时实现精确的几何拟合。为了提高鲁棒性,我们提出了一种拓扑校正策略,降低了对超参数设置的敏感性。此外,我们还开发了利用自适应权重来加速收敛和提高运行时效率的新操作。在不同数据集上的大量实验表明,DCUDF2在几何保真度和拓扑精度方面始终优于DCUDF和现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信