Leveraging computational linguistics and machine learning for detection of ultra-high risk of mental health disorders in youths.

IF 4.1 Q2 PSYCHIATRY
Jordon Junyang Kho, Shangzheng Song, Samuel Ming Xuan Tan, Nur Hikmah Fitriyah, Matheus Calvin Lokadjaja, Jie Yin Yee, Zixu Yang, Eric Yu Hai Chen, Jimmy Lee, Wilson Wen Bin Goh
{"title":"Leveraging computational linguistics and machine learning for detection of ultra-high risk of mental health disorders in youths.","authors":"Jordon Junyang Kho, Shangzheng Song, Samuel Ming Xuan Tan, Nur Hikmah Fitriyah, Matheus Calvin Lokadjaja, Jie Yin Yee, Zixu Yang, Eric Yu Hai Chen, Jimmy Lee, Wilson Wen Bin Goh","doi":"10.1038/s41537-025-00649-3","DOIUrl":null,"url":null,"abstract":"<p><p>Mental illnesses often manifest through behavioral changes, with speech serving as a key medium for expressing thoughts and emotions. The use of computational linguistics on speech data in mental illnesses is a promising approach to uncover objective biomarkers for the early detection of mental illnesses. This study analyzed speech transcripts from 80 youths at ultra-high risk of psychosis (UHR) and 329 healthy controls, examining text features such as sentiment variability, cohesion, lexical sophistication, morphology, syntactic sophistication, and lexical diversity. Factor analysis revealed five key linguistic themes: Sentiment Intensity and Variability, Linguistic Register Alignment, Phonographic Uniqueness and Recognizability, Morphological Complexity and Imageability, and Lexical Richness and Typicalness. Regression analysis indicated UHR speech is characterized by diminished sentiment variability (β = -0.07), deviation from linguistic registers (β = -0.16), fewer phonographic neighbors (β = -0.11), lower morphological complexity (β = -0.36), and more predictable lexical structures (β = 0.05). Optimized machine learning (ML) models trained on Boruta-selected features achieved a mean AUC of 0.70. Our findings highlight the potential of sentiment and linguistic analyses in speech for training ML models to aid in early detection and monitoring of mental health conditions.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"11 1","pages":"98"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264269/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-025-00649-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Mental illnesses often manifest through behavioral changes, with speech serving as a key medium for expressing thoughts and emotions. The use of computational linguistics on speech data in mental illnesses is a promising approach to uncover objective biomarkers for the early detection of mental illnesses. This study analyzed speech transcripts from 80 youths at ultra-high risk of psychosis (UHR) and 329 healthy controls, examining text features such as sentiment variability, cohesion, lexical sophistication, morphology, syntactic sophistication, and lexical diversity. Factor analysis revealed five key linguistic themes: Sentiment Intensity and Variability, Linguistic Register Alignment, Phonographic Uniqueness and Recognizability, Morphological Complexity and Imageability, and Lexical Richness and Typicalness. Regression analysis indicated UHR speech is characterized by diminished sentiment variability (β = -0.07), deviation from linguistic registers (β = -0.16), fewer phonographic neighbors (β = -0.11), lower morphological complexity (β = -0.36), and more predictable lexical structures (β = 0.05). Optimized machine learning (ML) models trained on Boruta-selected features achieved a mean AUC of 0.70. Our findings highlight the potential of sentiment and linguistic analyses in speech for training ML models to aid in early detection and monitoring of mental health conditions.

Abstract Image

Abstract Image

利用计算语言学和机器学习来检测青少年心理健康障碍的超高风险。
精神疾病通常表现为行为改变,言语是表达思想和情感的关键媒介。在精神疾病的语音数据上使用计算语言学是一种很有前途的方法,可以发现早期发现精神疾病的客观生物标志物。本研究分析了80名超高精神病风险青少年和329名健康对照者的语音文本,考察了文本特征,如情感变异性、凝聚力、词汇复杂性、形态学、句法复杂性和词汇多样性。因子分析揭示了五个关键的语言主题:情感强度和变异性、语域一致性、语音独特性和可识别性、形态复杂性和可想象性、词汇丰富性和典型性。回归分析表明,UHR语音的特征包括情绪变异性(β = -0.07)、语言域偏差(β = -0.16)、邻近语音(β = -0.11)、形态复杂性(β = -0.36)和可预测的词汇结构(β = 0.05)。在boruta选择的特征上训练的优化机器学习(ML)模型的平均AUC为0.70。我们的研究结果强调了语音情感和语言分析在训练ML模型方面的潜力,以帮助早期发现和监测心理健康状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信