An exploratory look at functional responses to a second antigen injection in a freshwater turtle.

IF 2.1 3区 生物学 Q1 ZOOLOGY
Jennifer Terry, Isabella V Davis, Virginie Rolland, Lorin A Neuman-Lee
{"title":"An exploratory look at functional responses to a second antigen injection in a freshwater turtle.","authors":"Jennifer Terry, Isabella V Davis, Virginie Rolland, Lorin A Neuman-Lee","doi":"10.1093/icb/icaf132","DOIUrl":null,"url":null,"abstract":"<p><p>Existing and emerging diseases threaten wildlife populations worldwide and population resilience in the face of disease depends on immune responses. To apply conservation strategies to populations threatened by disease, it is critical to know not only how individuals will respond to the initial exposure of the pathogen but also to determine risks when the pathogen becomes endemic or is reintroduced. Immune responses following a subsequent exposure to a pathogen may vary from initial responses due to several immunological memory mechanisms such as adaptive immune function and innate immune priming/training and tolerance. Alternatively, immune responses may vary as a consequence of resource limitation. Regardless of outcome, these altered responses could impact how individuals respond to successive pathogen exposures in their environment. Disease threatens reptiles worldwide but research on reptilian immunology has lagged behind other taxonomic groups, resulting in large gaps in our understanding of both mechanistic and functional immune responses. Reptiles possess traditionally considered \"innate\" and \"adaptive\" immune components, but current literature seems to agree that reptiles depend largely on innate immune components as adaptive responses are slow. We present an exploratory study in which we measured functional immune responses in male red-eared slider turtles (Trachemys scripta elegans) to 2 antigen injections representing bacterial (lipopolysaccharide; LPS), viral (polyinosinic-polycytidylic acid; poly(I: C), fungal infections (zymosan), and control (saline), administered 2 weeks apart. We separated serum and buffy layer (serum + BL) from blood samples and manipulated the serum + BL (fresh, frozen, frozen + heat) to systematically inactivate immune components. We conducted microbial killing assays using the manipulated serum + BL with Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus, and the diploid yeast Candida albicans, which allowed us to examine immune responses across various contexts. Although sample sizes were small, we observed varied responses across treatments and serum + BL/microbe assay combinations, suggesting that several mechanisms of immune memory may have occurred after the first treatment injection. Given the time frame of our exploratory study and previous research on acquired antibody production timing in reptiles, we suggest that our observations may be products of immune training/priming, tolerance, and resource reallocation. However, more work is necessary to examine these processes in reptiles and we make suggestions for future research directions. Our work further demonstrates the role that diverse immunological tools have in understanding immune strategies across taxa to enhance our knowledge of reptilian immunology and inform conservation decisions.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icaf132","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Existing and emerging diseases threaten wildlife populations worldwide and population resilience in the face of disease depends on immune responses. To apply conservation strategies to populations threatened by disease, it is critical to know not only how individuals will respond to the initial exposure of the pathogen but also to determine risks when the pathogen becomes endemic or is reintroduced. Immune responses following a subsequent exposure to a pathogen may vary from initial responses due to several immunological memory mechanisms such as adaptive immune function and innate immune priming/training and tolerance. Alternatively, immune responses may vary as a consequence of resource limitation. Regardless of outcome, these altered responses could impact how individuals respond to successive pathogen exposures in their environment. Disease threatens reptiles worldwide but research on reptilian immunology has lagged behind other taxonomic groups, resulting in large gaps in our understanding of both mechanistic and functional immune responses. Reptiles possess traditionally considered "innate" and "adaptive" immune components, but current literature seems to agree that reptiles depend largely on innate immune components as adaptive responses are slow. We present an exploratory study in which we measured functional immune responses in male red-eared slider turtles (Trachemys scripta elegans) to 2 antigen injections representing bacterial (lipopolysaccharide; LPS), viral (polyinosinic-polycytidylic acid; poly(I: C), fungal infections (zymosan), and control (saline), administered 2 weeks apart. We separated serum and buffy layer (serum + BL) from blood samples and manipulated the serum + BL (fresh, frozen, frozen + heat) to systematically inactivate immune components. We conducted microbial killing assays using the manipulated serum + BL with Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus, and the diploid yeast Candida albicans, which allowed us to examine immune responses across various contexts. Although sample sizes were small, we observed varied responses across treatments and serum + BL/microbe assay combinations, suggesting that several mechanisms of immune memory may have occurred after the first treatment injection. Given the time frame of our exploratory study and previous research on acquired antibody production timing in reptiles, we suggest that our observations may be products of immune training/priming, tolerance, and resource reallocation. However, more work is necessary to examine these processes in reptiles and we make suggestions for future research directions. Our work further demonstrates the role that diverse immunological tools have in understanding immune strategies across taxa to enhance our knowledge of reptilian immunology and inform conservation decisions.

对淡水龟第二次抗原注射的功能反应的探索性观察。
现有的和新出现的疾病威胁着全世界的野生动物种群,种群在面对疾病时的复原力取决于免疫反应。要将保护策略应用于受疾病威胁的种群,不仅要了解个体对初次接触病原体的反应,而且要确定病原体成为地方病或重新引入时的风险。由于多种免疫记忆机制,如适应性免疫功能、先天免疫启动/训练和耐受性,随后暴露于病原体后的免疫反应可能与初始反应不同。或者,免疫反应可能因资源限制而变化。无论结果如何,这些改变的反应可能会影响个体对环境中连续暴露病原体的反应。疾病威胁着全世界的爬行动物,但爬行动物免疫学的研究落后于其他分类类群,导致我们对机制和功能免疫反应的理解存在很大差距。传统上认为爬行动物具有“先天”和“适应性”免疫成分,但目前的文献似乎同意爬行动物在很大程度上依赖于先天免疫成分,因为适应性反应缓慢。我们提出了一项探索性研究,在该研究中,我们测量了雄性红耳滑龟(Trachemys scripta elegans)对2种抗原注射的功能性免疫反应,这些抗原注射代表细菌(脂多糖;脂多糖),病毒(多肌苷-多胞酸;poly(I: C),真菌感染(zymosan)和对照组(生理盐水),间隔2周给药。我们从血样中分离血清和白蜡层(血清+ BL),并对血清+ BL(新鲜、冷冻、冷冻+热)进行处理,系统地灭活免疫成分。我们使用革兰氏阴性大肠杆菌、革兰氏阳性金黄色葡萄球菌和二倍体酵母菌白色念珠菌处理过的血清+ BL进行了微生物杀灭试验,这使我们能够检查各种情况下的免疫反应。虽然样本量很小,但我们观察到不同治疗和血清+ BL/微生物检测组合的不同反应,这表明在第一次治疗注射后可能发生了几种免疫记忆机制。考虑到我们探索性研究的时间框架和之前对爬行动物获得性抗体产生时间的研究,我们认为我们的观察结果可能是免疫训练/启动、耐受性和资源再分配的产物。然而,这些过程在爬行动物中还有待进一步研究,我们对未来的研究方向提出了建议。我们的工作进一步证明了不同的免疫工具在理解不同类群的免疫策略方面的作用,以增强我们对爬行动物免疫学的了解,并为保护决策提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信