CC48 a new CB2R agonist/FAAH inhibitor dual drug blocks gastric cancer progression and overcomes paclitaxel resistance.

IF 11.4 1区 医学 Q1 ONCOLOGY
Annalisa Schirizzi, Natasha Renna, Giampiero De Leonardis, Rosangela Montanaro, Francesco Mastropasqua, Giovanni Graziano, Chiara Riganti, Isabella Pisano, Antonio Laghezza, Carmen Abate, Angela Stefanachi, Nicola Antonio Colabufo, Cristina Caccioppoli, Giusy Bianco, Anna Maria Valentini, Raffaele Armentano, Gianluigi Giannelli, Marialessandra Contino, Rosalba D'Alessandro
{"title":"CC48 a new CB2R agonist/FAAH inhibitor dual drug blocks gastric cancer progression and overcomes paclitaxel resistance.","authors":"Annalisa Schirizzi, Natasha Renna, Giampiero De Leonardis, Rosangela Montanaro, Francesco Mastropasqua, Giovanni Graziano, Chiara Riganti, Isabella Pisano, Antonio Laghezza, Carmen Abate, Angela Stefanachi, Nicola Antonio Colabufo, Cristina Caccioppoli, Giusy Bianco, Anna Maria Valentini, Raffaele Armentano, Gianluigi Giannelli, Marialessandra Contino, Rosalba D'Alessandro","doi":"10.1186/s13046-025-03476-7","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer (GC) has poor survival in advanced stages, with limited treatment options. Paclitaxel (PTX) is commonly used, but resistance often arises, highlighting the need for targeted therapies. Cannabinoid receptor type 2 (CB2R) is overexpressed in several cancers and its activation has been associated with reduced tumor growth and metastasis. This study evaluated the antitumor activity of selected CB2R agonists with dual activity (CC48 and Fi9) compared to single-target compounds (ASF151), a reference agonist (compound 1), and an antagonist (AM630). The compounds' cytotoxicity was determined in GC lines, including PTX-resistant cells, with different levels of CB2R expression. Firstly, were ported that the addition of CB2R ligands to PTX significantly reduces the actively proliferating cells (Ki67+) even in chemotherapy-resistant GC cells. Concentrations below the IC50 of all compounds were used to minimise toxicity. Activation of Akt/mTORC1 and MAPK cascades were found to be related to antiproliferative activity, which was found to be independent of CB2R expression in the different cell lines. Surprisingly, both agonist and antagonist compounds inhibited cell growth. The interaction of CC48 and the reference compounds 1 and AM630, with P-glycoprotein (P-gp) could explain their greater effectiveness in overcoming PTX resistance. Furthermore, CC48 was particularly effective among the agonists in inducing the expression of key autophagy proteins and activating the apoptotic pathway via caspase 3/7 (p < 0.05). The combination of CC48 with PTX further amplified this effect in both sensitive and resistant cells (p < 0.01). CC48 significantly reduced GC cells migration and epithelial-mesenchymal transition (EMT) by modulating the vimentin protein (p < 0.05). In an orthotopic mouse model, CC48 inhibits tumor volume (p < 0.01)and also reduces the number of Ki67 + cells (p < 0.05), without cytotoxic effects. Histological analysis revealed widespread necrosis with inflammatory and apoptotic features, including pyknotic nuclei and fibrotic replacement in CC48-treatedtumors. Moreover, CC48 treatment reduced circulating levels of G-CSF, IL-12 (p40), and eotaxin (p < 0.05), suggesting an immunomodulatory role. In conclusion CC48, a novel multi-target ligand (MTDL), activating CB2R and inhibiting Fatty Acid Amide Hydrolase (FAAH), effectively blocks GC progression modulating the immune response and overcoming PTX resistance.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"209"},"PeriodicalIF":11.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265377/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03476-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gastric cancer (GC) has poor survival in advanced stages, with limited treatment options. Paclitaxel (PTX) is commonly used, but resistance often arises, highlighting the need for targeted therapies. Cannabinoid receptor type 2 (CB2R) is overexpressed in several cancers and its activation has been associated with reduced tumor growth and metastasis. This study evaluated the antitumor activity of selected CB2R agonists with dual activity (CC48 and Fi9) compared to single-target compounds (ASF151), a reference agonist (compound 1), and an antagonist (AM630). The compounds' cytotoxicity was determined in GC lines, including PTX-resistant cells, with different levels of CB2R expression. Firstly, were ported that the addition of CB2R ligands to PTX significantly reduces the actively proliferating cells (Ki67+) even in chemotherapy-resistant GC cells. Concentrations below the IC50 of all compounds were used to minimise toxicity. Activation of Akt/mTORC1 and MAPK cascades were found to be related to antiproliferative activity, which was found to be independent of CB2R expression in the different cell lines. Surprisingly, both agonist and antagonist compounds inhibited cell growth. The interaction of CC48 and the reference compounds 1 and AM630, with P-glycoprotein (P-gp) could explain their greater effectiveness in overcoming PTX resistance. Furthermore, CC48 was particularly effective among the agonists in inducing the expression of key autophagy proteins and activating the apoptotic pathway via caspase 3/7 (p < 0.05). The combination of CC48 with PTX further amplified this effect in both sensitive and resistant cells (p < 0.01). CC48 significantly reduced GC cells migration and epithelial-mesenchymal transition (EMT) by modulating the vimentin protein (p < 0.05). In an orthotopic mouse model, CC48 inhibits tumor volume (p < 0.01)and also reduces the number of Ki67 + cells (p < 0.05), without cytotoxic effects. Histological analysis revealed widespread necrosis with inflammatory and apoptotic features, including pyknotic nuclei and fibrotic replacement in CC48-treatedtumors. Moreover, CC48 treatment reduced circulating levels of G-CSF, IL-12 (p40), and eotaxin (p < 0.05), suggesting an immunomodulatory role. In conclusion CC48, a novel multi-target ligand (MTDL), activating CB2R and inhibiting Fatty Acid Amide Hydrolase (FAAH), effectively blocks GC progression modulating the immune response and overcoming PTX resistance.

新型CB2R激动剂/FAAH抑制剂双药CC48阻断胃癌进展,克服紫杉醇耐药。
胃癌(GC)晚期生存率较低,治疗选择有限。紫杉醇(PTX)是常用药物,但经常出现耐药性,这突出了靶向治疗的必要性。大麻素受体2型(CB2R)在几种癌症中过度表达,其激活与肿瘤生长和转移的减少有关。本研究评估了具有双重活性的CB2R激动剂(CC48和Fi9)与单靶点化合物(ASF151)、参考激动剂(化合物1)和拮抗剂(AM630)的抗肿瘤活性。在CB2R表达水平不同的GC细胞系(包括ptx耐药细胞)中测定化合物的细胞毒性。首先,我们报道了在PTX中添加CB2R配体可以显著降低活跃增殖细胞(Ki67+),即使在化疗耐药的GC细胞中也是如此。所有化合物的浓度都低于IC50,以尽量减少毒性。Akt/mTORC1和MAPK级联的激活与抗增殖活性有关,而在不同细胞系中,抗增殖活性与CB2R的表达无关。令人惊讶的是,激动剂和拮抗剂化合物都抑制细胞生长。CC48与对照化合物1和AM630与p -糖蛋白(P-gp)的相互作用可以解释它们在克服PTX抗性方面更有效。此外,CC48在诱导关键自噬蛋白的表达和通过caspase 3/7激活凋亡途径方面特别有效
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信