Serena Muratcioglu, Christopher A Eide, Chien-Lun Hung, Kent Gorday, Emily Sumpena, Wenqi Zuo, Jay T Groves, Brian J Druker, John Kuriyan
{"title":"Autophosphorylation of oncoprotein TEL-ABL in myeloid and lymphoid cells confers resistance to the allosteric ABL inhibitor asciminib.","authors":"Serena Muratcioglu, Christopher A Eide, Chien-Lun Hung, Kent Gorday, Emily Sumpena, Wenqi Zuo, Jay T Groves, Brian J Druker, John Kuriyan","doi":"10.1126/scisignal.adt5931","DOIUrl":null,"url":null,"abstract":"<p><p>Chromosomal translocations that fuse <i>ABL1</i> to <i>BCR</i> or <i>TEL</i> cause human leukemias. In BCR-ABL and TEL-ABL fusion proteins, oligomerization and loss of an autoinhibitory myristoylation site in the SH3 domain of ABL lead to increased ABL tyrosine kinase activity. We assessed the ability of asciminib, an allosteric inhibitor of BCR-ABL that binds to the myristoyl-binding site in the ABL kinase domain, to inhibit these fusion proteins. Although the ABL components of the two fusion proteins have identical sequences, asciminib was much less effective against TEL-ABL than it was against BCR-ABL in cell-growth assays. In contrast, ATP-competitive tyrosine kinase inhibitors, such as imatinib and ponatinib, were equally effective against both fusion proteins. A helix in the ABL kinase domain that closes over bound asciminib was required for the sensitivity of BCR-ABL to the drug but had no effect on that of TEL-ABL, suggesting that the native autoinhibitory mechanism that asciminib engages in BCR-ABL is disrupted in TEL-ABL. Single-molecule microscopy demonstrated that BCR-ABL was mainly dimeric in cells, whereas TEL-ABL formed higher-order oligomers, which promoted trans-autophosphorylation, including of a regulatory phosphorylation site (Tyr<sup>89</sup>) in the SH3 domain of ABL. Nonphosphorylated TEL-ABL was intrinsically susceptible to inhibition by asciminib, but phosphorylation at Tyr<sup>89</sup> disassembled the autoinhibited conformation of ABL, thereby preventing asciminib from binding. Our results demonstrate that phosphorylation determines whether an ABL fusion protein is sensitive to allosteric inhibition.</p>","PeriodicalId":49560,"journal":{"name":"Science Signaling","volume":"18 895","pages":"eadt5931"},"PeriodicalIF":6.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313245/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1126/scisignal.adt5931","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Chromosomal translocations that fuse ABL1 to BCR or TEL cause human leukemias. In BCR-ABL and TEL-ABL fusion proteins, oligomerization and loss of an autoinhibitory myristoylation site in the SH3 domain of ABL lead to increased ABL tyrosine kinase activity. We assessed the ability of asciminib, an allosteric inhibitor of BCR-ABL that binds to the myristoyl-binding site in the ABL kinase domain, to inhibit these fusion proteins. Although the ABL components of the two fusion proteins have identical sequences, asciminib was much less effective against TEL-ABL than it was against BCR-ABL in cell-growth assays. In contrast, ATP-competitive tyrosine kinase inhibitors, such as imatinib and ponatinib, were equally effective against both fusion proteins. A helix in the ABL kinase domain that closes over bound asciminib was required for the sensitivity of BCR-ABL to the drug but had no effect on that of TEL-ABL, suggesting that the native autoinhibitory mechanism that asciminib engages in BCR-ABL is disrupted in TEL-ABL. Single-molecule microscopy demonstrated that BCR-ABL was mainly dimeric in cells, whereas TEL-ABL formed higher-order oligomers, which promoted trans-autophosphorylation, including of a regulatory phosphorylation site (Tyr89) in the SH3 domain of ABL. Nonphosphorylated TEL-ABL was intrinsically susceptible to inhibition by asciminib, but phosphorylation at Tyr89 disassembled the autoinhibited conformation of ABL, thereby preventing asciminib from binding. Our results demonstrate that phosphorylation determines whether an ABL fusion protein is sensitive to allosteric inhibition.
Science SignalingBiochemistry, Genetics and Molecular Biology-Molecular Biology
自引率
0.00%
发文量
148
期刊介绍:
Science Signaling is a weekly, online multidisciplinary journal dedicated to the life sciences. Our editorial team's mission is to publish studies that elucidate the fundamental mechanisms underlying biological processes across various organisms. We prioritize research that offers novel insights into physiology, elucidates aberrant mechanisms leading to disease, identifies potential therapeutic targets and strategies, and characterizes the effects of drugs both in vitro and in vivo.