Marissa Lindman, Irving Estevez, Eduard Marmut, Evan M DaPrano, Tsui-Wen Chou, Kimberly Newman, Colm Atkins, Natasha M O'Brown, Brian P Daniels
{"title":"Astrocytic RIPK3 exerts protective anti-inflammatory activity in mice with viral encephalitis by transcriptional induction of serpins.","authors":"Marissa Lindman, Irving Estevez, Eduard Marmut, Evan M DaPrano, Tsui-Wen Chou, Kimberly Newman, Colm Atkins, Natasha M O'Brown, Brian P Daniels","doi":"10.1126/scisignal.adq6422","DOIUrl":null,"url":null,"abstract":"<p><p>Flaviviruses pose a substantial threat to public health because of their ability to infect the central nervous system (CNS). Receptor-interacting protein kinase 3 (RIPK3) is a central coordinator that promotes neuroinflammation during viral infection of the CNS, a role that occurs independently of its canonical function in inducing necroptosis. Here, we used mouse genetic tools to induce astrocyte-specific deletion, overexpression, and chemogenetic activation of RIPK3 to demonstrate an anti-inflammatory function for astrocytic RIPK3. RIPK3 activation in astrocytes promoted host survival during flavivirus encephalitis by limiting immune cell recruitment to the CNS. Despite inducing a proinflammatory transcriptional program, astrocytic RIPK3 restrained neuroinflammation by increasing the abundance of the protease inhibitor SerpinA3N, which preserved blood-brain barrier integrity, reduced leukocyte infiltration, and improved survival outcomes during flavivirus encephalitis. These findings highlight a previously unappreciated role for astrocytic RIPK3 in suppressing pathologic neuroinflammation.</p>","PeriodicalId":49560,"journal":{"name":"Science Signaling","volume":"18 895","pages":"eadq6422"},"PeriodicalIF":6.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407229/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1126/scisignal.adq6422","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Flaviviruses pose a substantial threat to public health because of their ability to infect the central nervous system (CNS). Receptor-interacting protein kinase 3 (RIPK3) is a central coordinator that promotes neuroinflammation during viral infection of the CNS, a role that occurs independently of its canonical function in inducing necroptosis. Here, we used mouse genetic tools to induce astrocyte-specific deletion, overexpression, and chemogenetic activation of RIPK3 to demonstrate an anti-inflammatory function for astrocytic RIPK3. RIPK3 activation in astrocytes promoted host survival during flavivirus encephalitis by limiting immune cell recruitment to the CNS. Despite inducing a proinflammatory transcriptional program, astrocytic RIPK3 restrained neuroinflammation by increasing the abundance of the protease inhibitor SerpinA3N, which preserved blood-brain barrier integrity, reduced leukocyte infiltration, and improved survival outcomes during flavivirus encephalitis. These findings highlight a previously unappreciated role for astrocytic RIPK3 in suppressing pathologic neuroinflammation.
Science SignalingBiochemistry, Genetics and Molecular Biology-Molecular Biology
自引率
0.00%
发文量
148
期刊介绍:
Science Signaling is a weekly, online multidisciplinary journal dedicated to the life sciences. Our editorial team's mission is to publish studies that elucidate the fundamental mechanisms underlying biological processes across various organisms. We prioritize research that offers novel insights into physiology, elucidates aberrant mechanisms leading to disease, identifies potential therapeutic targets and strategies, and characterizes the effects of drugs both in vitro and in vivo.