Zhekang Dong, Liyan Zhu, Shiqi Zhou, Xiaoyue Ji, Chun Sing Lai, Minjiang Chen, Jiansong Ji
{"title":"FE-SpikeFormer: A Camera-Based Facial Expression Recognition Method for Hospital Health Monitoring.","authors":"Zhekang Dong, Liyan Zhu, Shiqi Zhou, Xiaoyue Ji, Chun Sing Lai, Minjiang Chen, Jiansong Ji","doi":"10.1109/JBHI.2025.3589267","DOIUrl":null,"url":null,"abstract":"<p><p>Facial expression recognition has emerged as a critical research area in health monitoring, enabling healthcare professionals to assess patients' emotional and psychological states for timely intervention and personalized care. However, existing methods often struggle to balance computational accuracy with energy efficiency. To address this challenge, this paper proposes FE-SpikeFormer - a high-accuracy, low-energy, and deployment-friendly Spiking Neural Network (SNN) for facial emotion recognition. The proposed architecture comprises three key components: the initial convolution module, the spiking extraction block, and the spiking integration block. These three modules collectively support detailed and contextual feature extraction, promote spatial feature integration, and strengthen the representational capacity of spiking signals. Meanwhile, a joint verification is conducted in both controlled laboratory settings and real-world hospital scenarios. Experimental results demonstrate that FE-SpikeFormer achieves top-three recognition accuracy among state-of-the-art methods, while utilizing only 6.93 million parameters. Moreover, it exhibits strong robustness against various noise conditions, underscoring its potential for practical deployment in healthcare environments.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3589267","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Facial expression recognition has emerged as a critical research area in health monitoring, enabling healthcare professionals to assess patients' emotional and psychological states for timely intervention and personalized care. However, existing methods often struggle to balance computational accuracy with energy efficiency. To address this challenge, this paper proposes FE-SpikeFormer - a high-accuracy, low-energy, and deployment-friendly Spiking Neural Network (SNN) for facial emotion recognition. The proposed architecture comprises three key components: the initial convolution module, the spiking extraction block, and the spiking integration block. These three modules collectively support detailed and contextual feature extraction, promote spatial feature integration, and strengthen the representational capacity of spiking signals. Meanwhile, a joint verification is conducted in both controlled laboratory settings and real-world hospital scenarios. Experimental results demonstrate that FE-SpikeFormer achieves top-three recognition accuracy among state-of-the-art methods, while utilizing only 6.93 million parameters. Moreover, it exhibits strong robustness against various noise conditions, underscoring its potential for practical deployment in healthcare environments.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.