Yajunzi Wang, Jing Li, Haoruo Zha, Shuhe Liu, Daiyun Huang, Lei Fu, Xin Liu
{"title":"Paradigms, innovations, and biological applications of RNA velocity: a comprehensive review.","authors":"Yajunzi Wang, Jing Li, Haoruo Zha, Shuhe Liu, Daiyun Huang, Lei Fu, Xin Liu","doi":"10.1093/bib/bbaf339","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing enables unprecedented insights into cellular heterogeneity and lineage dynamics. RNA velocity, by modeling the temporal relationship between spliced and unspliced transcripts, extends this capability to predict future transcriptional states and uncover the directionality of cellular transitions. Since the introduction of foundational frameworks such as Velocyto and scVelo, an expanding array of computational tools has emerged, each based on distinct biophysical assumptions and modeling paradigms. To provide a structured overview of this rapidly evolving field, we categorize RNA velocity models into three classes: steady-state methods, trajectory methods, and state extrapolation methods, according to their underlying approaches to transcriptional kinetics inference. For each category, we systematically analyze both the overarching principles and the individual methods, comparing their assumptions, kinetic models, and computational strategies and assessing their respective strengths and limitations. To demonstrate the biological utility of these tools, we summarize representative applications of RNA velocity across developmental biology and diseased microenvironments. We further introduce emerging extensions of RNA velocity methods that go beyond classical splicing kinetics. Finally, we discuss existing limitations regarding model assumptions, preprocessing procedures, and velocity visualization and offer practical recommendations for model selection and application. This review offers a comprehensive guide to the RNA velocity landscape, supporting its effective implementation in dynamic transcriptomic research.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265890/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf339","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell RNA sequencing enables unprecedented insights into cellular heterogeneity and lineage dynamics. RNA velocity, by modeling the temporal relationship between spliced and unspliced transcripts, extends this capability to predict future transcriptional states and uncover the directionality of cellular transitions. Since the introduction of foundational frameworks such as Velocyto and scVelo, an expanding array of computational tools has emerged, each based on distinct biophysical assumptions and modeling paradigms. To provide a structured overview of this rapidly evolving field, we categorize RNA velocity models into three classes: steady-state methods, trajectory methods, and state extrapolation methods, according to their underlying approaches to transcriptional kinetics inference. For each category, we systematically analyze both the overarching principles and the individual methods, comparing their assumptions, kinetic models, and computational strategies and assessing their respective strengths and limitations. To demonstrate the biological utility of these tools, we summarize representative applications of RNA velocity across developmental biology and diseased microenvironments. We further introduce emerging extensions of RNA velocity methods that go beyond classical splicing kinetics. Finally, we discuss existing limitations regarding model assumptions, preprocessing procedures, and velocity visualization and offer practical recommendations for model selection and application. This review offers a comprehensive guide to the RNA velocity landscape, supporting its effective implementation in dynamic transcriptomic research.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.