Beyond static structures: protein dynamic conformations modeling in the post-AlphaFold era.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Xinyue Cui, Lingyu Ge, Xia Chen, Zexin Lv, Suhui Wang, Xiaogen Zhou, Guijun Zhang
{"title":"Beyond static structures: protein dynamic conformations modeling in the post-AlphaFold era.","authors":"Xinyue Cui, Lingyu Ge, Xia Chen, Zexin Lv, Suhui Wang, Xiaogen Zhou, Guijun Zhang","doi":"10.1093/bib/bbaf340","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of deep learning, particularly AlphaFold, has revolutionized static protein structure prediction, marking a transformative milestone in structural biology. However, protein function is not solely determined by static three-dimensional structures but is fundamentally governed by dynamic transitions between multiple conformational states. This shift from static to multi-state representations is crucial for understanding the mechanistic basis of protein function and regulation. This review outlines the fundamental concepts of protein dynamic conformations, surveys recent computational advances in modeling these dynamics in the post-AlphaFold era, and highlights key challenges, including data limitations, methodological constraints, and evaluation metrics. We also discuss potential strategies to address these challenges and explore future research directions to deepen our understanding of protein dynamics and their functional implications. This work aims to provide insights and perspectives to facilitate the ongoing development of protein conformation studies in the era of artificial intelligence-driven structural biology.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12262120/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf340","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of deep learning, particularly AlphaFold, has revolutionized static protein structure prediction, marking a transformative milestone in structural biology. However, protein function is not solely determined by static three-dimensional structures but is fundamentally governed by dynamic transitions between multiple conformational states. This shift from static to multi-state representations is crucial for understanding the mechanistic basis of protein function and regulation. This review outlines the fundamental concepts of protein dynamic conformations, surveys recent computational advances in modeling these dynamics in the post-AlphaFold era, and highlights key challenges, including data limitations, methodological constraints, and evaluation metrics. We also discuss potential strategies to address these challenges and explore future research directions to deepen our understanding of protein dynamics and their functional implications. This work aims to provide insights and perspectives to facilitate the ongoing development of protein conformation studies in the era of artificial intelligence-driven structural biology.

超越静态结构:后alphafold时代的蛋白质动态构象建模。
深度学习的出现,特别是AlphaFold,已经彻底改变了静态蛋白质结构预测,标志着结构生物学的一个变革里程碑。然而,蛋白质的功能不仅仅是由静态的三维结构决定的,而是由多个构象状态之间的动态转变所决定的。这种从静态到多状态表征的转变对于理解蛋白质功能和调控的机制基础至关重要。本文概述了蛋白质动态构象的基本概念,调查了后alphafold时代这些动态建模的最新计算进展,并强调了关键挑战,包括数据限制、方法约束和评估指标。我们还讨论了应对这些挑战的潜在策略,并探索了未来的研究方向,以加深我们对蛋白质动力学及其功能意义的理解。这项工作旨在为人工智能驱动的结构生物学时代蛋白质构象研究的持续发展提供见解和观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信