{"title":"Terpene cyclization catalysis with a functional cavitand: driving selectivity through precise molecular recognition","authors":"Ricard López-Coll, Agustí Lledó","doi":"10.1039/d5qo00922g","DOIUrl":null,"url":null,"abstract":"A three-walled self-folding cavitand receptor derived from resorcin[4]arene featuring phenol groups near the confined space catalyzes the cyclization reaction of nerol, using HCl as co-catalyst. In contrast to terpene cyclization reactions mediated by other synthetic hosts, the process reported herein is substrate specific, provides very high selectivity towards cyclization products, and delivers limonene—a thermodynamically disfavored product—as the major compound. The observed acceleration, turnover and unique selectivity are rationalized on the basis of precise molecular recognition phenomena, supported by NMR studies and DFT calculations.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"13 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qo00922g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
A three-walled self-folding cavitand receptor derived from resorcin[4]arene featuring phenol groups near the confined space catalyzes the cyclization reaction of nerol, using HCl as co-catalyst. In contrast to terpene cyclization reactions mediated by other synthetic hosts, the process reported herein is substrate specific, provides very high selectivity towards cyclization products, and delivers limonene—a thermodynamically disfavored product—as the major compound. The observed acceleration, turnover and unique selectivity are rationalized on the basis of precise molecular recognition phenomena, supported by NMR studies and DFT calculations.
期刊介绍:
Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.