Elias Quijano, Diana Martinez-Saucedo, Zaira Ianniello, Natasha Pinto-Medici, Madison Rackear, Haoting Chen, Luiz Lola-Pereira, Yanfeng Liu, Denise Hegan, Xinning Shan, Robert Tseng, Deanne Yugawa, Sumedha Chowdhury, Minsoo Khang, Jay P. Singh, Rashed Abdullah, Perisa Azhir, Soki Kashima, Wendy S. Woods, Nicholas Gosstola, Bruce C. Turner, Stephen Squinto, Dale L. Ludwig, Ranjit S. Bindra, Marie E. Robert, David A. Braun, Pablo Perez Pinera, W. Mark Saltzman, Luisa F. Escobar-Hoyos, Peter M. Glazer
{"title":"Systemic administration of an RNA binding and cell-penetrating antibody targets therapeutic RNA to multiple mouse models of cancer","authors":"Elias Quijano, Diana Martinez-Saucedo, Zaira Ianniello, Natasha Pinto-Medici, Madison Rackear, Haoting Chen, Luiz Lola-Pereira, Yanfeng Liu, Denise Hegan, Xinning Shan, Robert Tseng, Deanne Yugawa, Sumedha Chowdhury, Minsoo Khang, Jay P. Singh, Rashed Abdullah, Perisa Azhir, Soki Kashima, Wendy S. Woods, Nicholas Gosstola, Bruce C. Turner, Stephen Squinto, Dale L. Ludwig, Ranjit S. Bindra, Marie E. Robert, David A. Braun, Pablo Perez Pinera, W. Mark Saltzman, Luisa F. Escobar-Hoyos, Peter M. Glazer","doi":"10.1126/scitranslmed.adk1868","DOIUrl":null,"url":null,"abstract":"There is intense interest in the advancement of RNAs as rationally designed therapeutic agents, especially in oncology, where a major focus is to use RNAs to stimulate pattern recognition receptors to leverage innate immune responses. However, the inability to selectively deliver therapeutic RNAs within target cells after intravenous administration now hinders the development of this type of treatment for cancer and other disorders. Here, we found that a tumor-targeting, cell-penetrating, and RNA binding monoclonal antibody, TMAB3, can form stable, noncovalent antibody/RNA complexes of a discrete size that mediate highly specific and functional delivery of RNAs into tumors. Using 3p-hpRNA, an agonist of the pattern recognition receptor retinoic acid–inducible gene-I (RIG-I), we observed robust antitumor efficacy of systemically administered TMAB3/3p-hpRNA complexes in mouse models of pancreatic cancer, medulloblastoma, and melanoma. In the KPC syngeneic, orthotopic pancreatic cancer model in immunocompetent mice, treatment with TMAB3/3p-hpRNA tripled animal survival, decreased tumor growth, and specifically targeted malignant cells, with a 1500-fold difference in RNA delivery into tumor cells versus nonmalignant cells within the tumor mass. Single-cell RNA sequencing (scRNA-seq) and flow cytometry demonstrated that TMAB3/3p-hpRNA treatment elicited a potent antitumoral immune response characterized by RIG-I activation and increased infiltration and activity of cytotoxic T cells. These studies established that TMAB3/RNA complexes can deliver RNA payloads specifically to hard-to-treat tumor cells to achieve antitumor efficacy, providing an antibody-based platform to advance the study of RNA therapies for the treatment of patients with cancer.","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"276 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1126/scitranslmed.adk1868","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is intense interest in the advancement of RNAs as rationally designed therapeutic agents, especially in oncology, where a major focus is to use RNAs to stimulate pattern recognition receptors to leverage innate immune responses. However, the inability to selectively deliver therapeutic RNAs within target cells after intravenous administration now hinders the development of this type of treatment for cancer and other disorders. Here, we found that a tumor-targeting, cell-penetrating, and RNA binding monoclonal antibody, TMAB3, can form stable, noncovalent antibody/RNA complexes of a discrete size that mediate highly specific and functional delivery of RNAs into tumors. Using 3p-hpRNA, an agonist of the pattern recognition receptor retinoic acid–inducible gene-I (RIG-I), we observed robust antitumor efficacy of systemically administered TMAB3/3p-hpRNA complexes in mouse models of pancreatic cancer, medulloblastoma, and melanoma. In the KPC syngeneic, orthotopic pancreatic cancer model in immunocompetent mice, treatment with TMAB3/3p-hpRNA tripled animal survival, decreased tumor growth, and specifically targeted malignant cells, with a 1500-fold difference in RNA delivery into tumor cells versus nonmalignant cells within the tumor mass. Single-cell RNA sequencing (scRNA-seq) and flow cytometry demonstrated that TMAB3/3p-hpRNA treatment elicited a potent antitumoral immune response characterized by RIG-I activation and increased infiltration and activity of cytotoxic T cells. These studies established that TMAB3/RNA complexes can deliver RNA payloads specifically to hard-to-treat tumor cells to achieve antitumor efficacy, providing an antibody-based platform to advance the study of RNA therapies for the treatment of patients with cancer.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.