SRENet: Saliency-Based Lighting Enhancement Network

IF 13.7
Yuming Fang;Chen Peng;Chenlei Lv;Weisi Lin
{"title":"SRENet: Saliency-Based Lighting Enhancement Network","authors":"Yuming Fang;Chen Peng;Chenlei Lv;Weisi Lin","doi":"10.1109/TIP.2025.3587588","DOIUrl":null,"url":null,"abstract":"Lighting enhancement is a classical topic in low-level image processing. Existing studies mainly focus on global illumination optimization while overlooking local semantic objects, and this limits the performance of exposure compensation. In this paper, we introduce SRENet, a novel lighting enhancement network guided by saliency information. It adopts a two-step strategy of foreground-background separation optimization to achieve a balance between global and local illumination. In the first step, we extract salient regions and implement the local illumination enhancement that ensures the exposure quality of salient objects. Next, we utilize a fusion module to process global lighting optimization based on local enhanced results. With the two-step strategy, the proposed SRENet yield better lighting enhancement for local illumination while preserving the globally optimal results. Experimental results demonstrate that our method obtains more effective enhancement results for various tasks of exposure correction and lighting quality improvement. The source code and pre-trained models are available at <uri>https://github.com/PlanktonQAQ/SRENet</uri>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"4541-4552"},"PeriodicalIF":13.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11080243/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lighting enhancement is a classical topic in low-level image processing. Existing studies mainly focus on global illumination optimization while overlooking local semantic objects, and this limits the performance of exposure compensation. In this paper, we introduce SRENet, a novel lighting enhancement network guided by saliency information. It adopts a two-step strategy of foreground-background separation optimization to achieve a balance between global and local illumination. In the first step, we extract salient regions and implement the local illumination enhancement that ensures the exposure quality of salient objects. Next, we utilize a fusion module to process global lighting optimization based on local enhanced results. With the two-step strategy, the proposed SRENet yield better lighting enhancement for local illumination while preserving the globally optimal results. Experimental results demonstrate that our method obtains more effective enhancement results for various tasks of exposure correction and lighting quality improvement. The source code and pre-trained models are available at https://github.com/PlanktonQAQ/SRENet
SRENet:基于显著性的照明增强网络
光照增强是底层图像处理中的一个经典课题。现有的研究主要集中在全局光照优化,忽略了局部语义对象,这限制了曝光补偿的性能。本文介绍了一种基于显著性信息的新型照明增强网络SRENet。该算法采用两步前背景分离优化策略,实现全局和局部照明的平衡。在第一步中,我们提取显著区域,并实现局部照明增强,以确保显著目标的曝光质量。接下来,我们利用融合模块来处理基于局部增强结果的全局照明优化。采用两步策略,所提出的SRENet在保持全局最优结果的同时,对局部照明产生更好的照明增强。实验结果表明,该方法在各种曝光校正和改善照明质量的任务中获得了更有效的增强效果。源代码和预训练模型可在https://github.com/PlanktonQAQ/SRENet上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信