Andong Lu;Wanyu Wang;Chenglong Li;Jin Tang;Bin Luo
{"title":"AFTER: Attention-Based Fusion Router for RGBT Tracking","authors":"Andong Lu;Wanyu Wang;Chenglong Li;Jin Tang;Bin Luo","doi":"10.1109/TIP.2025.3586467","DOIUrl":null,"url":null,"abstract":"Multi-modal feature fusion as a core investigative component of RGBT tracking emerges numerous fusion studies in recent years. However, existing RGBT tracking methods widely adopt fixed fusion structures to integrate multi-modal feature, which are hard to handle various challenges in dynamic scenarios. To address this problem, this work presents a novel Attention-based Fusion router called AFTER, which optimizes the fusion structure to adapt to the dynamic challenging scenarios, for robust RGBT tracking. In particular, we design a fusion structure space based on the hierarchical attention network, each attention-based fusion unit corresponding to a fusion operation and a combination of these attention units corresponding to a fusion structure. Through optimizing the combination of attention-based fusion units, we can dynamically select the fusion structure to adapt to various challenging scenarios. Unlike complex search of different structures in neural architecture search algorithms, we develop a dynamic routing algorithm, which equips each attention-based fusion unit with a router, to predict the combination weights for efficient optimization of the fusion structure. Extensive experiments on five mainstream RGBT tracking datasets demonstrate the superior performance of the proposed AFTER against state-of-the-art RGBT trackers. We release the code in <uri>https://github.com/Alexadlu/AFter</uri>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"4386-4401"},"PeriodicalIF":13.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11079869/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-modal feature fusion as a core investigative component of RGBT tracking emerges numerous fusion studies in recent years. However, existing RGBT tracking methods widely adopt fixed fusion structures to integrate multi-modal feature, which are hard to handle various challenges in dynamic scenarios. To address this problem, this work presents a novel Attention-based Fusion router called AFTER, which optimizes the fusion structure to adapt to the dynamic challenging scenarios, for robust RGBT tracking. In particular, we design a fusion structure space based on the hierarchical attention network, each attention-based fusion unit corresponding to a fusion operation and a combination of these attention units corresponding to a fusion structure. Through optimizing the combination of attention-based fusion units, we can dynamically select the fusion structure to adapt to various challenging scenarios. Unlike complex search of different structures in neural architecture search algorithms, we develop a dynamic routing algorithm, which equips each attention-based fusion unit with a router, to predict the combination weights for efficient optimization of the fusion structure. Extensive experiments on five mainstream RGBT tracking datasets demonstrate the superior performance of the proposed AFTER against state-of-the-art RGBT trackers. We release the code in https://github.com/Alexadlu/AFter