Gabriela D. A. Guardia, Carlos H dos Anjos, Aline Rangel-Pozzo, Filipe F dos Santos, Alexander Birbrair, Paula F Asprino, Anamaria A Camargo, Pedro A F Galante
{"title":"Alternative splicing generates HER2 isoform diversity underlying antibody-drug conjugate resistance in breast cancer","authors":"Gabriela D. A. Guardia, Carlos H dos Anjos, Aline Rangel-Pozzo, Filipe F dos Santos, Alexander Birbrair, Paula F Asprino, Anamaria A Camargo, Pedro A F Galante","doi":"10.1101/gr.280304.124","DOIUrl":null,"url":null,"abstract":"Breast cancer (BC) is a heterogeneous disease that can be molecularly classified based on the expression of the ERBB2 receptor (also known as HER2) and hormone receptors. Targeted therapies for HER2-positive BC, such as trastuzumab, antibody-drug conjugates (ADCs) and tyrosine kinase inhibitors, have improved patient outcomes but primary/acquired resistance still pose challenges that can limit treatments' long-term efficacy. Addressing these obstacles is vital for enhancing therapeutic strategies and patient care. Alternative splicing, a post-transcriptional mechanism that enhances transcript diversity (isoforms), can produce proteins with varied functions, cellular localizations, or binding properties. Here, we comprehensively characterized the HER2 alternative splicing isoforms, assessed their expression in primary BC patients and cell lines, and explored their role in resistance to anti-HER2 therapies. We expanded the catalog of known HER2 protein-coding isoforms from 13 to 90, revealing distinct patterns of protein domains, cellular localizations, and protein structures, along with their antibody-binding sites. By profiling expression in 561 primary BC samples and mass spectrometry data, we discovered a complex landscape of HER2 isoform, revealing novel transcripts that were previously unrecognized and are not assessed in routine clinical practice. Finally, the assessment of HER2 isoform expression in BC cell cultures sensitive or resistant to trastuzumab and ADCs revealed that drug-resistant cells shifted their expression toward isoforms lacking antibody-binding domains. Our results broaden the understanding of HER2 isoforms, revealing distinct mechanisms of potential resistance to anti-HER2 therapies, particularly ADCs. This expanded landscape of HER2 isoforms emphasizes the crucial role of alternative splicing investigations in advancing precision-targeted cancer therapies.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"95 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.280304.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer (BC) is a heterogeneous disease that can be molecularly classified based on the expression of the ERBB2 receptor (also known as HER2) and hormone receptors. Targeted therapies for HER2-positive BC, such as trastuzumab, antibody-drug conjugates (ADCs) and tyrosine kinase inhibitors, have improved patient outcomes but primary/acquired resistance still pose challenges that can limit treatments' long-term efficacy. Addressing these obstacles is vital for enhancing therapeutic strategies and patient care. Alternative splicing, a post-transcriptional mechanism that enhances transcript diversity (isoforms), can produce proteins with varied functions, cellular localizations, or binding properties. Here, we comprehensively characterized the HER2 alternative splicing isoforms, assessed their expression in primary BC patients and cell lines, and explored their role in resistance to anti-HER2 therapies. We expanded the catalog of known HER2 protein-coding isoforms from 13 to 90, revealing distinct patterns of protein domains, cellular localizations, and protein structures, along with their antibody-binding sites. By profiling expression in 561 primary BC samples and mass spectrometry data, we discovered a complex landscape of HER2 isoform, revealing novel transcripts that were previously unrecognized and are not assessed in routine clinical practice. Finally, the assessment of HER2 isoform expression in BC cell cultures sensitive or resistant to trastuzumab and ADCs revealed that drug-resistant cells shifted their expression toward isoforms lacking antibody-binding domains. Our results broaden the understanding of HER2 isoforms, revealing distinct mechanisms of potential resistance to anti-HER2 therapies, particularly ADCs. This expanded landscape of HER2 isoforms emphasizes the crucial role of alternative splicing investigations in advancing precision-targeted cancer therapies.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.