Meilin Zhang, Heng Du, Yu Zhang, Yue Zhuo, Zhen Liu, Yahui Xue, Lei Zhou, Sixuan Zhou, Wanying Li, Jian-Feng Liu
{"title":"A high-throughput screening method for selecting feature SNPs to evaluate breed diversity and infer ancestry","authors":"Meilin Zhang, Heng Du, Yu Zhang, Yue Zhuo, Zhen Liu, Yahui Xue, Lei Zhou, Sixuan Zhou, Wanying Li, Jian-Feng Liu","doi":"10.1101/gr.280176.124","DOIUrl":null,"url":null,"abstract":"As the scale of deep whole-genome sequencing (WGS) data has grown exponentially, hundreds of millions of single nucleotide polymorphisms (SNPs) have been identified in livestock. Utilizing these massive SNP data in population stratification analysis, ancestry prediction, and breed diversity assessments leads to overfitting issues in computational models and creates computational bottlenecks. Therefore, selecting genetic variants that express high amounts of information for use in population diversity studies and ancestry inference becomes critically important. Here, we develop a method, HITSNP, that combines feature selection and machine learning algorithms to select high-representative SNPs that can effectively estimate breed diversity and infer ancestry. HITSNP outperforms existing feature selection methods in estimating accuracy and computational stability. Furthermore, HITSNP offers a new algorithm to predict the number and composition of ancestral populations using a small number of SNPs, and avoiding calculating the number of clusters. Taken together, HITSNP facilitates the research of population structure, animal breeding, and animal resource protection.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"109 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.280176.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As the scale of deep whole-genome sequencing (WGS) data has grown exponentially, hundreds of millions of single nucleotide polymorphisms (SNPs) have been identified in livestock. Utilizing these massive SNP data in population stratification analysis, ancestry prediction, and breed diversity assessments leads to overfitting issues in computational models and creates computational bottlenecks. Therefore, selecting genetic variants that express high amounts of information for use in population diversity studies and ancestry inference becomes critically important. Here, we develop a method, HITSNP, that combines feature selection and machine learning algorithms to select high-representative SNPs that can effectively estimate breed diversity and infer ancestry. HITSNP outperforms existing feature selection methods in estimating accuracy and computational stability. Furthermore, HITSNP offers a new algorithm to predict the number and composition of ancestral populations using a small number of SNPs, and avoiding calculating the number of clusters. Taken together, HITSNP facilitates the research of population structure, animal breeding, and animal resource protection.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.