Simulation and Analysis of GaAs‐Au Layer‐HfO2 Dual‐Band Photodetector with High Performance in Visible Spectral Region

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Abha Maurya, Dhandapani Vaithiyanathan, Anuj K. Sharma
{"title":"Simulation and Analysis of GaAs‐Au Layer‐HfO2 Dual‐Band Photodetector with High Performance in Visible Spectral Region","authors":"Abha Maurya, Dhandapani Vaithiyanathan, Anuj K. Sharma","doi":"10.1002/adts.202500319","DOIUrl":null,"url":null,"abstract":"This study presents a dual‐band GaAs‐Au layer‐HfO<jats:sub>2</jats:sub> heterojunction‐based photodetector (PD) designed for visible spectral range. The optical response of the proposed PD design, operating under zero‐bias conditions, is comprehensively investigated using finite difference time domain (FDTD) simulations in the whole visible region (360–700 nm). The results indicate that a 10 nm Au layer in combination with a 20 nm HfO₂ layer leads to superior optical performance. Under zero‐bias conditions, the proposed design GaAs (1000 nm)‐Au layer (10 nm)‐HfO₂ (20 nm) exhibits high absorbance (A) = 0.952 a.u., quantum efficiency (η) = 0.585, and responsivity (ρ) = 299 mA W<jats:sup>−1</jats:sup> at wavelength (λ) = 636.17 nm in the red band. The same design provides A = 0.808 a.u., η = 0.446, and ρ = 182 mA W<jats:sup>−1</jats:sup> at λ = 506.78 nm in the green band. Further, an electrical simulation of the PD design, i.e., GaAs (1000 nm)‐Au layer (10 nm)‐HfO₂ (20 nm)–ZnO (10 nm) exhibits an ultra‐low dark current (I<jats:sub>dark</jats:sub>) of 1.64 × 10<jats:sup>−12</jats:sup> A, and the corresponding detectivity (D<jats:sup>*</jats:sup>) of 0.15 × 10<jats:sup>9</jats:sup> Jones in green band, and 0.26 × 10<jats:sup>9</jats:sup> Jones in red band under zero‐bias condition. These results further establish that that the proposed PD design is capable of providing superior performance compared to several recently‐reported visible region PDs. The proposed PD design with dual‐band performance provides a crucial versatility as the same design can efficiently operate across two separate spectral ranges. This capability is especially beneficial for diverse optical sensing applications that demand high sensitivity across multiple wavelength ranges.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"45 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500319","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a dual‐band GaAs‐Au layer‐HfO2 heterojunction‐based photodetector (PD) designed for visible spectral range. The optical response of the proposed PD design, operating under zero‐bias conditions, is comprehensively investigated using finite difference time domain (FDTD) simulations in the whole visible region (360–700 nm). The results indicate that a 10 nm Au layer in combination with a 20 nm HfO₂ layer leads to superior optical performance. Under zero‐bias conditions, the proposed design GaAs (1000 nm)‐Au layer (10 nm)‐HfO₂ (20 nm) exhibits high absorbance (A) = 0.952 a.u., quantum efficiency (η) = 0.585, and responsivity (ρ) = 299 mA W−1 at wavelength (λ) = 636.17 nm in the red band. The same design provides A = 0.808 a.u., η = 0.446, and ρ = 182 mA W−1 at λ = 506.78 nm in the green band. Further, an electrical simulation of the PD design, i.e., GaAs (1000 nm)‐Au layer (10 nm)‐HfO₂ (20 nm)–ZnO (10 nm) exhibits an ultra‐low dark current (Idark) of 1.64 × 10−12 A, and the corresponding detectivity (D*) of 0.15 × 109 Jones in green band, and 0.26 × 109 Jones in red band under zero‐bias condition. These results further establish that that the proposed PD design is capable of providing superior performance compared to several recently‐reported visible region PDs. The proposed PD design with dual‐band performance provides a crucial versatility as the same design can efficiently operate across two separate spectral ranges. This capability is especially beneficial for diverse optical sensing applications that demand high sensitivity across multiple wavelength ranges.
可见光区高性能GaAs - Au层- HfO2双波段光电探测器的仿真与分析
本研究提出了一种设计用于可见光谱范围的双波段GaAs - Au层- HfO2异质结光电探测器(PD)。利用时域有限差分(FDTD)模拟,在整个可见光区域(360-700 nm)全面研究了在零偏置条件下工作的PD设计的光学响应。结果表明,10 nm的Au层与20 nm的HfO₂层结合可以获得优异的光学性能。在零偏置条件下,设计的GaAs (1000 nm)‐Au (10 nm)‐HfO₂(20 nm)在636.17 nm波长处具有高吸光度(A) = 0.952 a.u,量子效率(η) = 0.585,响应率(ρ) = 299 mA W−1。同样的设计在λ = 506.78 nm的绿带处提供了A = 0.808 a.u, η = 0.446和ρ = 182 mA W−1。此外,在零偏置条件下,GaAs (1000 nm) - Au (10 nm) - HfO₂(20 nm) -ZnO (10 nm)设计的电模拟显示出1.64 × 10−12 A的超低暗电流(Idark),相应的探测率(D*)在绿带为0.15 × 109琼斯,在红带为0.26 × 109琼斯。这些结果进一步证实,与最近报道的几种可见区PD相比,所提出的PD设计能够提供优越的性能。所提出的PD设计具有双频段性能,提供了关键的多功能性,因为相同的设计可以在两个不同的光谱范围内有效地工作。这种能力对于需要跨多个波长范围的高灵敏度的各种光学传感应用尤其有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信