{"title":"Downregulation of <i>NEAT1</i> due to loss of TDP-43 function exacerbates motor neuron degeneration in amyotrophic lateral sclerosis.","authors":"Yu Kawakami, Yohei Iguchi, Jiayi Li, Yoshinobu Amakusa, Takashi Yoshimura, Ryo Chikuchi, Satoshi Yokoi, Madoka Iida, Yuichi Riku, Yasushi Iwasaki, Tetsuro Hirose, Shinichi Nakagawa, Masahisa Katsuno","doi":"10.1093/braincomms/fcaf261","DOIUrl":null,"url":null,"abstract":"<p><p>TAR DNA-binding protein 43 (TDP-43) is of particular interest in the pathogenesis of amyotrophic lateral sclerosis (ALS). It has been speculated that loss of nuclear TDP-43 and its cytoplasmic aggregation contributes to neurodegeneration. Although considerable attention has been paid to RNA metabolism in TDP-43 function, TDP-43 is also known to act as a transcription factor. This study found that the expression of Nuclear-enriched abundant transcript 1 (<i>NEAT1</i>), a long-non-coding RNA, was substantially downregulated in motor neurons with nuclear TDP-43 loss, but upregulated in those with preserved nuclear TDP-43, in the postmortem spinal cords of patients with sporadic ALS. TDP-43 depletion induced <i>Neat1</i> downregulation in Neuro2a cells, primary cortical neurons, and mouse spinal motor neurons. Furthermore, TDP-43 was found to positively regulate <i>NEAT1</i> at the transcriptional level. Finally, <i>Neat1</i> knockout exacerbates neurodegeneration of hSOD1<sup>G93A</sup> mice accompanied by increased misfolded superoxide dismutase 1 (SOD1) aggregations. Transcriptome analysis revealed that <i>Neat1</i> knockout reduced protein folding-related genes, such as heat shock protein family A member 1A (<i>Hspa1a</i>), in the spinal cords of hSOD1<sup>G93A</sup> mice. Our results indicated that the loss of TDP-43 function enhances ALS neurodegeneration by losing the protective effect of <i>NEAT1</i>.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 4","pages":"fcaf261"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256815/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcaf261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
TAR DNA-binding protein 43 (TDP-43) is of particular interest in the pathogenesis of amyotrophic lateral sclerosis (ALS). It has been speculated that loss of nuclear TDP-43 and its cytoplasmic aggregation contributes to neurodegeneration. Although considerable attention has been paid to RNA metabolism in TDP-43 function, TDP-43 is also known to act as a transcription factor. This study found that the expression of Nuclear-enriched abundant transcript 1 (NEAT1), a long-non-coding RNA, was substantially downregulated in motor neurons with nuclear TDP-43 loss, but upregulated in those with preserved nuclear TDP-43, in the postmortem spinal cords of patients with sporadic ALS. TDP-43 depletion induced Neat1 downregulation in Neuro2a cells, primary cortical neurons, and mouse spinal motor neurons. Furthermore, TDP-43 was found to positively regulate NEAT1 at the transcriptional level. Finally, Neat1 knockout exacerbates neurodegeneration of hSOD1G93A mice accompanied by increased misfolded superoxide dismutase 1 (SOD1) aggregations. Transcriptome analysis revealed that Neat1 knockout reduced protein folding-related genes, such as heat shock protein family A member 1A (Hspa1a), in the spinal cords of hSOD1G93A mice. Our results indicated that the loss of TDP-43 function enhances ALS neurodegeneration by losing the protective effect of NEAT1.