Approximate Bayesian inference in a model for self-generated gradient collective cell movement.

IF 1.4 4区 数学 Q3 STATISTICS & PROBABILITY
Computational Statistics Pub Date : 2025-01-01 Epub Date: 2025-03-08 DOI:10.1007/s00180-025-01606-5
Jon Devlin, Agnieszka Borowska, Dirk Husmeier, John Mackenzie
{"title":"Approximate Bayesian inference in a model for self-generated gradient collective cell movement.","authors":"Jon Devlin, Agnieszka Borowska, Dirk Husmeier, John Mackenzie","doi":"10.1007/s00180-025-01606-5","DOIUrl":null,"url":null,"abstract":"<p><p>In this article we explore parameter inference in a novel hybrid discrete-continuum model describing the movement of a population of cells in response to a self-generated chemotactic gradient. The model employs a drift-diffusion stochastic process, rendering likelihood-based inference methods impractical. Consequently, we consider approximate Bayesian computation (ABC) methods, which have gained popularity for models with intractable or computationally expensive likelihoods. ABC involves simulating from the generative model, using parameters from generated observations that are \"close enough\" to the true data to approximate the posterior distribution. Given the plethora of existing ABC methods, selecting the most suitable one for a specific problem can be challenging. To address this, we employ a simple drift-diffusion stochastic differential equation (SDE) as a benchmark problem. This allows us to assess the accuracy of popular ABC algorithms under known configurations. We also evaluate the bias between ABC-posteriors and the exact posterior for the basic SDE model, where the posterior distribution is tractable. The top-performing ABC algorithms are subsequently applied to the proposed cell movement model to infer its key parameters. This study not only contributes to understanding cell movement but also sheds light on the comparative efficiency of different ABC algorithms in a well-defined context.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"40 7","pages":"3399-3452"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-025-01606-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we explore parameter inference in a novel hybrid discrete-continuum model describing the movement of a population of cells in response to a self-generated chemotactic gradient. The model employs a drift-diffusion stochastic process, rendering likelihood-based inference methods impractical. Consequently, we consider approximate Bayesian computation (ABC) methods, which have gained popularity for models with intractable or computationally expensive likelihoods. ABC involves simulating from the generative model, using parameters from generated observations that are "close enough" to the true data to approximate the posterior distribution. Given the plethora of existing ABC methods, selecting the most suitable one for a specific problem can be challenging. To address this, we employ a simple drift-diffusion stochastic differential equation (SDE) as a benchmark problem. This allows us to assess the accuracy of popular ABC algorithms under known configurations. We also evaluate the bias between ABC-posteriors and the exact posterior for the basic SDE model, where the posterior distribution is tractable. The top-performing ABC algorithms are subsequently applied to the proposed cell movement model to infer its key parameters. This study not only contributes to understanding cell movement but also sheds light on the comparative efficiency of different ABC algorithms in a well-defined context.

自生成梯度集体细胞运动模型中的近似贝叶斯推理。
在本文中,我们探讨了一种新的混合离散连续模型中的参数推理,该模型描述了一群细胞响应自生成的趋化梯度的运动。该模型采用漂移扩散随机过程,使得基于似然的推理方法不可行。因此,我们考虑近似贝叶斯计算(ABC)方法,这种方法在具有难以处理或计算昂贵的可能性的模型中得到了普及。ABC包括从生成模型中进行模拟,使用从生成的观测数据中“足够接近”真实数据的参数来近似后验分布。鉴于现有的ABC方法过多,为特定问题选择最合适的方法可能具有挑战性。为了解决这个问题,我们采用一个简单的漂移-扩散随机微分方程(SDE)作为基准问题。这使我们能够评估在已知配置下流行的ABC算法的准确性。我们还评估了基本SDE模型的abc -后验和精确后验之间的偏差,其中后验分布是可处理的。随后将表现最好的ABC算法应用于所提出的细胞运动模型,以推断其关键参数。这项研究不仅有助于理解细胞运动,而且还揭示了在明确定义的背景下不同ABC算法的比较效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信