Subgroup Testing in the Change-Plane Cox Model.

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Xiao Zhang, Panpan Ren, Xingjie Shi, Shuangge Ma, Xu Liu
{"title":"Subgroup Testing in the Change-Plane Cox Model.","authors":"Xiao Zhang, Panpan Ren, Xingjie Shi, Shuangge Ma, Xu Liu","doi":"10.1002/sim.70179","DOIUrl":null,"url":null,"abstract":"<p><p>Survival outcomes are frequently observed in numerous biomedical and epidemiological studies. The impact of treatment on these outcomes may vary across subgroups characterized by other covariates, for example, immune checkpoint blockade therapy may have different effects on the survival of solid tumor patients based on their tumor mutational burden. In such scenarios, change-plane Cox models provide a suitable approach to identify subgroups that exhibit an improved treatment effect in the analysis of survival data. While some literature is available for testing the presence of a change plane in these models, the existing methods primarily rely on the score test, which has limited power in small sample situations. In this paper, we introduce a novel method based on the likelihood ratio test to enhance the power. The asymptotic distributions of the proposed test statistic under both the null and local alternative hypotheses are established. Furthermore, the finite sample performance of the proposed approach is comprehensively evaluated through extensive simulation studies. Finally, the proposed test is applied to analyze nonsmall cell lung cancer data, further demonstrating its practical utility.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 15-17","pages":"e70179"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70179","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Survival outcomes are frequently observed in numerous biomedical and epidemiological studies. The impact of treatment on these outcomes may vary across subgroups characterized by other covariates, for example, immune checkpoint blockade therapy may have different effects on the survival of solid tumor patients based on their tumor mutational burden. In such scenarios, change-plane Cox models provide a suitable approach to identify subgroups that exhibit an improved treatment effect in the analysis of survival data. While some literature is available for testing the presence of a change plane in these models, the existing methods primarily rely on the score test, which has limited power in small sample situations. In this paper, we introduce a novel method based on the likelihood ratio test to enhance the power. The asymptotic distributions of the proposed test statistic under both the null and local alternative hypotheses are established. Furthermore, the finite sample performance of the proposed approach is comprehensively evaluated through extensive simulation studies. Finally, the proposed test is applied to analyze nonsmall cell lung cancer data, further demonstrating its practical utility.

变平面Cox模型的子组检验。
在许多生物医学和流行病学研究中经常观察到生存结果。治疗对这些结果的影响可能因其他协变量而异,例如,免疫检查点阻断治疗可能根据肿瘤突变负担对实体瘤患者的生存产生不同的影响。在这种情况下,变平面Cox模型提供了一种合适的方法来识别在生存数据分析中表现出改善治疗效果的亚组。虽然有一些文献可用于测试这些模型中变化平面的存在,但现有的方法主要依赖于分数测试,这在小样本情况下的能力有限。本文提出了一种基于似然比检验的改进方法。在零假设和局部备用假设下,建立了所提出的检验统计量的渐近分布。此外,通过广泛的仿真研究,对该方法的有限样本性能进行了全面评估。最后,将该方法应用于非小细胞肺癌数据分析,进一步证明了该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信