Multidimensional biocircuitry of exercise adaptation: integrating in vivo and ex vivo phenomics with miRNA mapping.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY
Physiological genomics Pub Date : 2025-09-01 Epub Date: 2025-07-14 DOI:10.1152/physiolgenomics.00068.2025
Jeremy S McAdam, Michael P Craig, Zachary A Graham, Brandon Peoples, S Craig Tuggle, Regina S Seay, Kaleen M Lavin, Amber B Gargus, Samia M O'Bryan, Sufen Yang, Devin J Drummer, Christian J Kelley, Kalyani Peri, Margaret B Bell, Inmaculada Aban, Gary R Cutter, Arash Mahyari, Yuan Wen, Jin Zhang, Akshay Hira, Timothy J Broderick, Madhavi P Kadakia, Marcas M Bamman
{"title":"Multidimensional biocircuitry of exercise adaptation: integrating in vivo and ex vivo phenomics with miRNA mapping.","authors":"Jeremy S McAdam, Michael P Craig, Zachary A Graham, Brandon Peoples, S Craig Tuggle, Regina S Seay, Kaleen M Lavin, Amber B Gargus, Samia M O'Bryan, Sufen Yang, Devin J Drummer, Christian J Kelley, Kalyani Peri, Margaret B Bell, Inmaculada Aban, Gary R Cutter, Arash Mahyari, Yuan Wen, Jin Zhang, Akshay Hira, Timothy J Broderick, Madhavi P Kadakia, Marcas M Bamman","doi":"10.1152/physiolgenomics.00068.2025","DOIUrl":null,"url":null,"abstract":"<p><p>In a randomized, dose-response trial, we used molecular and phenomic profiling to compare responses with traditional moderate-intensity endurance and resistance training (TRAD) versus high-intensity tactical training (HITT) that encompassed explosive whole-body interval training and high-intensity resistance training. Ninety-four participants (18-27 yr) completed 12 wk of TRAD or HITT followed by 4 wk of detraining. Although similar performance and body composition improvements were observed in response to HITT and TRAD, some dose-dependent differences were observed for: <i>1</i>) ex vivo muscle tissue changes in myofiber size, capillarization, satellite cell frequency, and mitochondrial function and <i>2</i>) differential gene expression (DGE) of muscle and serum exosomal miRNAs (miRs). However, these dose-dependent ex vivo muscle adaptations were overshadowed by wide-ranging interindividual response heterogeneity (IRH). We therefore explored response heterogeneity by first establishing minimum clinically important difference (MCID) scores to classify each participant based on MCIDs for functional muscle quality (fMQ) and cardiorespiratory fitness (CRF) and then modeling all data based on MCID classification. Using higher-order singular value decomposition (HOSVD), we established multidimensional biocircuitry linked to interindividual response heterogeneity that identified the most influential features across lifestyle, body composition, performance, ex vivo muscle tissue, and miRNA mapping domains. Via cross-comparison of MCID-linked miRs identified via DGE and HOSVD, nine miRs emerged as robust features of training adaptability, providing new insights into the integrated biocircuitry driving IRH.<b>NEW & NOTEWORTHY</b> We examined in vivo and ex vivo adaptations to traditional moderate-intensity endurance and resistance training (TRAD) versus high-intensity tactical training (HITT; explosive whole-body interval training and high-intensity resistance training). TRAD and HITT improved physiological performance and body composition, and induced ex vivo muscle adaptations, with remarkable interindividual response heterogeneity (IRH) in improvements. We leveraged multidimensional modeling to identify interindividual response heterogeneity biocircuitry that integrates deep phenotyping and miR transcriptomics (serum exosomes and skeletal muscle).</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"526-550"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00068.2025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In a randomized, dose-response trial, we used molecular and phenomic profiling to compare responses with traditional moderate-intensity endurance and resistance training (TRAD) versus high-intensity tactical training (HITT) that encompassed explosive whole-body interval training and high-intensity resistance training. Ninety-four participants (18-27 yr) completed 12 wk of TRAD or HITT followed by 4 wk of detraining. Although similar performance and body composition improvements were observed in response to HITT and TRAD, some dose-dependent differences were observed for: 1) ex vivo muscle tissue changes in myofiber size, capillarization, satellite cell frequency, and mitochondrial function and 2) differential gene expression (DGE) of muscle and serum exosomal miRNAs (miRs). However, these dose-dependent ex vivo muscle adaptations were overshadowed by wide-ranging interindividual response heterogeneity (IRH). We therefore explored response heterogeneity by first establishing minimum clinically important difference (MCID) scores to classify each participant based on MCIDs for functional muscle quality (fMQ) and cardiorespiratory fitness (CRF) and then modeling all data based on MCID classification. Using higher-order singular value decomposition (HOSVD), we established multidimensional biocircuitry linked to interindividual response heterogeneity that identified the most influential features across lifestyle, body composition, performance, ex vivo muscle tissue, and miRNA mapping domains. Via cross-comparison of MCID-linked miRs identified via DGE and HOSVD, nine miRs emerged as robust features of training adaptability, providing new insights into the integrated biocircuitry driving IRH.NEW & NOTEWORTHY We examined in vivo and ex vivo adaptations to traditional moderate-intensity endurance and resistance training (TRAD) versus high-intensity tactical training (HITT; explosive whole-body interval training and high-intensity resistance training). TRAD and HITT improved physiological performance and body composition, and induced ex vivo muscle adaptations, with remarkable interindividual response heterogeneity (IRH) in improvements. We leveraged multidimensional modeling to identify interindividual response heterogeneity biocircuitry that integrates deep phenotyping and miR transcriptomics (serum exosomes and skeletal muscle).

运动适应的多维生物回路:体内和体外表型组学与miRNA图谱的整合。
在一项随机剂量反应试验中,我们使用分子和现象分析来比较传统(TRAD)中等强度耐力和阻力训练与高强度战术训练(HITT)的反应,后者包括爆发性全身间歇训练和高强度阻力训练。94名参与者(18-27岁)完成了12周的TRAD或HITT,随后进行了4周的去训练。尽管对HITT和TRAD的反应观察到类似的性能和体成分改善,但在以下方面观察到一些剂量依赖性差异:(i)肌纤维大小、毛细血管化、卫星细胞频率和线粒体功能的离体肌肉组织变化;(ii)肌肉和血清外泌体mirna (miRs)的差异基因表达(DGE)。然而,这些剂量依赖的离体肌肉适应被广泛的个体间反应异质性所掩盖。因此,我们首先建立最小临床重要差异(MCID)评分,根据功能性肌肉质量(fMQ)和心肺健康(CRF)的MCIDs对每个参与者进行分类,然后基于MCID分类对所有数据建模,以此来探索反应的异质性。利用高阶奇异值分解(HOSVD),我们建立了与个体间反应异质性相关的多维生物回路,确定了生活方式、身体组成、表现、离体肌肉组织和miRNA图谱域等最具影响力的特征。通过DGE和HOSVD鉴定的mcid相关miRs的交叉比较,9个miRs成为训练适应性的强大特征,为驱动IRH的集成生物电路提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信