{"title":"Dynamic modifications of circular RNAs drive oncogenesis.","authors":"Jiaojiao Dai, Zhe Wang, Xiaoxun Cheng, Zhengze Hu, Jinghan Hua","doi":"10.1080/17501911.2025.2518918","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are a class of covalently closed non-coding RNAs that regulate the progression of multiple cancers. Recent studies have revealed the presence of several post-transcriptional modifications such as N6-methyladenosine (m<sup>6</sup>A), N1-methyladenosine (m<sup>1</sup>A), 5-methylcytosine (m<sup>5</sup>C), N4-acetylcytidine (ac<sup>4</sup>C), and N7-methylguanosine (m<sup>7</sup>G) on circRNAs. This review synthesizes the results of articles retrieved through systematic searches of PubMed and Web of science databases, mainly focusing on circRNA modifications in cancers. These modifications affect the biogenesis, metabolism, stability, and function of circRNAs in cancers, highlighting the critical roles of circRNAs modifications in cancers. Moreover, circRNAs crosstalk with epigenetic modifications of mRNA across various cancers, offering new perspectives for cancer therapy. Innovations in detection techniques, such as anti-modifying antibodies and mass spectrometry, have improved the identification and sensitivity of epigenetically modified circRNAs. Emerging technologies including artificial intelligence (AI)-based bioinformatics algorithms will accelerate the development of RNA epigenetic modifications-based precision therapies. Herein, we summarize a range of epigenetically modified circRNAs and their future research directions. We hope to develop clinical protocols that targeting circRNAs modification for the treatment of refractory malignancies.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1-10"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17501911.2025.2518918","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Circular RNAs (circRNAs) are a class of covalently closed non-coding RNAs that regulate the progression of multiple cancers. Recent studies have revealed the presence of several post-transcriptional modifications such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytidine (ac4C), and N7-methylguanosine (m7G) on circRNAs. This review synthesizes the results of articles retrieved through systematic searches of PubMed and Web of science databases, mainly focusing on circRNA modifications in cancers. These modifications affect the biogenesis, metabolism, stability, and function of circRNAs in cancers, highlighting the critical roles of circRNAs modifications in cancers. Moreover, circRNAs crosstalk with epigenetic modifications of mRNA across various cancers, offering new perspectives for cancer therapy. Innovations in detection techniques, such as anti-modifying antibodies and mass spectrometry, have improved the identification and sensitivity of epigenetically modified circRNAs. Emerging technologies including artificial intelligence (AI)-based bioinformatics algorithms will accelerate the development of RNA epigenetic modifications-based precision therapies. Herein, we summarize a range of epigenetically modified circRNAs and their future research directions. We hope to develop clinical protocols that targeting circRNAs modification for the treatment of refractory malignancies.
期刊介绍:
Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community.
Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.