PEGylation of polymerized albumin retains colloid osmotic pressure: Towards an enhanced potential plasma substitute.

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Amna Abdalbaqi, Ahmad Yahya, Krianthan Govender, Carlos Muñoz, Gala Sanchez Van Moer, Daniela Lucas, Pedro Cabrales, Andre F Palmer
{"title":"PEGylation of polymerized albumin retains colloid osmotic pressure: Towards an enhanced potential plasma substitute.","authors":"Amna Abdalbaqi, Ahmad Yahya, Krianthan Govender, Carlos Muñoz, Gala Sanchez Van Moer, Daniela Lucas, Pedro Cabrales, Andre F Palmer","doi":"10.1002/btpr.70054","DOIUrl":null,"url":null,"abstract":"<p><p>Plasma expanders (PEs) are commonly used to replace lost blood volume for septic shock patients with increased vascular permeability. Human serum albumin (HSA) is the preferred PE, due to its innate ability to restore blood colloid osmotic pressure (COP). However, HSA is susceptible to protein extravasation under endothelial dysfunction leading to edema and exposing tissue to toxic HSA-bound metabolites. To prevent extravasation, the molecular diameter of HSA has been previously increased through chemical polymerization to yield polymerized HSA (PHSA). In this study, we further optimize PHSA size and COP via polyethylene glycol (PEG) surface conjugation. Previously synthesized PHSA that was size fractionated via tangential flow filtration (TFF) into two brackets (bracket A [500 kDa-0.2 μm] and bracket B [50-500 kDa]) served as precursors for subsequent PEGylation. Each PHSA bracket was thiolated with 2-iminothiolane hydrochloride (IT) and PEGylated with monofunctional 5 kDa maleimide PEG to yield PEGylated PHSA (PPHSA). All PPHSA solutions exhibited increased molecular size, zeta potential, and osmolality compared to their non-PEGylated precursor PHSA. At the same total protein concentration, PPHSA viscosity decreased compared to the precursor PHSA, while the COP remained consistent with HSA, indicating their potential to serve as PEs.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70054"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70054","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plasma expanders (PEs) are commonly used to replace lost blood volume for septic shock patients with increased vascular permeability. Human serum albumin (HSA) is the preferred PE, due to its innate ability to restore blood colloid osmotic pressure (COP). However, HSA is susceptible to protein extravasation under endothelial dysfunction leading to edema and exposing tissue to toxic HSA-bound metabolites. To prevent extravasation, the molecular diameter of HSA has been previously increased through chemical polymerization to yield polymerized HSA (PHSA). In this study, we further optimize PHSA size and COP via polyethylene glycol (PEG) surface conjugation. Previously synthesized PHSA that was size fractionated via tangential flow filtration (TFF) into two brackets (bracket A [500 kDa-0.2 μm] and bracket B [50-500 kDa]) served as precursors for subsequent PEGylation. Each PHSA bracket was thiolated with 2-iminothiolane hydrochloride (IT) and PEGylated with monofunctional 5 kDa maleimide PEG to yield PEGylated PHSA (PPHSA). All PPHSA solutions exhibited increased molecular size, zeta potential, and osmolality compared to their non-PEGylated precursor PHSA. At the same total protein concentration, PPHSA viscosity decreased compared to the precursor PHSA, while the COP remained consistent with HSA, indicating their potential to serve as PEs.

聚合白蛋白的聚乙二醇化保持胶体渗透压:迈向增强的潜在血浆替代品。
血浆扩张器(PEs)通常用于感染性休克患者血管通透性增加的补血。人血清白蛋白(HSA)是首选的PE,因为它天生具有恢复血液胶体渗透压(COP)的能力。然而,在内皮功能障碍下,HSA易发生蛋白外渗,导致水肿并使组织暴露于有毒的HSA结合代谢物中。为了防止外渗,以前已经通过化学聚合来增加HSA的分子直径以产生聚合HSA (PHSA)。在本研究中,我们通过聚乙二醇(PEG)表面偶联进一步优化了PHSA的尺寸和COP。先前合成的PHSA通过切向流过滤(TFF)将尺寸分成两个支架(支架A [500 kDa-0.2 μm]和支架B [50-500 kDa])作为后续PEGylation的前体。每个PHSA支架分别用2-亚氨基硫烷盐化(IT)和单功能5kda马来酰亚胺PEG聚乙二醇化,得到聚乙二醇化的PHSA (PPHSA)。与未聚乙二醇化的前体PHSA相比,所有PPHSA溶液的分子大小、zeta电位和渗透压都有所增加。在相同的总蛋白浓度下,PPHSA黏度比前体PHSA降低,而COP与HSA保持一致,表明它们具有作为PEs的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Progress
Biotechnology Progress 工程技术-生物工程与应用微生物
CiteScore
6.50
自引率
3.40%
发文量
83
审稿时长
4 months
期刊介绍: Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries. Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信