Amna Abdalbaqi, Ahmad Yahya, Krianthan Govender, Carlos Muñoz, Gala Sanchez Van Moer, Daniela Lucas, Pedro Cabrales, Andre F Palmer
{"title":"PEGylation of polymerized albumin retains colloid osmotic pressure: Towards an enhanced potential plasma substitute.","authors":"Amna Abdalbaqi, Ahmad Yahya, Krianthan Govender, Carlos Muñoz, Gala Sanchez Van Moer, Daniela Lucas, Pedro Cabrales, Andre F Palmer","doi":"10.1002/btpr.70054","DOIUrl":null,"url":null,"abstract":"<p><p>Plasma expanders (PEs) are commonly used to replace lost blood volume for septic shock patients with increased vascular permeability. Human serum albumin (HSA) is the preferred PE, due to its innate ability to restore blood colloid osmotic pressure (COP). However, HSA is susceptible to protein extravasation under endothelial dysfunction leading to edema and exposing tissue to toxic HSA-bound metabolites. To prevent extravasation, the molecular diameter of HSA has been previously increased through chemical polymerization to yield polymerized HSA (PHSA). In this study, we further optimize PHSA size and COP via polyethylene glycol (PEG) surface conjugation. Previously synthesized PHSA that was size fractionated via tangential flow filtration (TFF) into two brackets (bracket A [500 kDa-0.2 μm] and bracket B [50-500 kDa]) served as precursors for subsequent PEGylation. Each PHSA bracket was thiolated with 2-iminothiolane hydrochloride (IT) and PEGylated with monofunctional 5 kDa maleimide PEG to yield PEGylated PHSA (PPHSA). All PPHSA solutions exhibited increased molecular size, zeta potential, and osmolality compared to their non-PEGylated precursor PHSA. At the same total protein concentration, PPHSA viscosity decreased compared to the precursor PHSA, while the COP remained consistent with HSA, indicating their potential to serve as PEs.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70054"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70054","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma expanders (PEs) are commonly used to replace lost blood volume for septic shock patients with increased vascular permeability. Human serum albumin (HSA) is the preferred PE, due to its innate ability to restore blood colloid osmotic pressure (COP). However, HSA is susceptible to protein extravasation under endothelial dysfunction leading to edema and exposing tissue to toxic HSA-bound metabolites. To prevent extravasation, the molecular diameter of HSA has been previously increased through chemical polymerization to yield polymerized HSA (PHSA). In this study, we further optimize PHSA size and COP via polyethylene glycol (PEG) surface conjugation. Previously synthesized PHSA that was size fractionated via tangential flow filtration (TFF) into two brackets (bracket A [500 kDa-0.2 μm] and bracket B [50-500 kDa]) served as precursors for subsequent PEGylation. Each PHSA bracket was thiolated with 2-iminothiolane hydrochloride (IT) and PEGylated with monofunctional 5 kDa maleimide PEG to yield PEGylated PHSA (PPHSA). All PPHSA solutions exhibited increased molecular size, zeta potential, and osmolality compared to their non-PEGylated precursor PHSA. At the same total protein concentration, PPHSA viscosity decreased compared to the precursor PHSA, while the COP remained consistent with HSA, indicating their potential to serve as PEs.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.