Development of a halofluorocarbon, chromatography-free radiosynthesis of fluorine-18 difluorocarbene.

IF 4.4 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Catherine G F Dickmann, Andrew D Bond, Selena Milicevic Sephton, Franklin I Aigbirhio
{"title":"Development of a halofluorocarbon, chromatography-free radiosynthesis of fluorine-18 difluorocarbene.","authors":"Catherine G F Dickmann, Andrew D Bond, Selena Milicevic Sephton, Franklin I Aigbirhio","doi":"10.1186/s41181-025-00353-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In recent years, the development of the [<sup>18</sup>F]difluoromethyl radical ([<sup>18</sup>F]2-((difluoromethyl)sulfonyl)benzo[d]thiazole, [<sup>18</sup>F]4), and [<sup>18</sup>F]difluorocarbene ([<sup>18</sup>F]1-chloro-4-((difluoromethyl)sulfonyl)benzene, [<sup>18</sup>F]10) prosthetic groups, has paved the way towards direct <sup>18</sup>F-difluoromethylation in routine PET tracer synthesis with high molar activity. However, limitations in their syntheses may be hindering their widespread adoption by the radiochemistry community. Firstly, the synthesis of the precursors 2-((bromofluoromethyl)thio)benzo[d]thiazole (3) and (bromofluoromethyl)(4-chlorophfenyl)sulfane (8) requires the use of the ozone-depleting dibromofluoromethane, a reagent that is not-commercially available. Secondly, the reported syntheses of [<sup>18</sup>F]4 and [<sup>18</sup>F]10 are lengthy and require semi-preparative HPLC purification prior to the <sup>18</sup>F-difluoromethylation step. Finally, in the case of [<sup>18</sup>F]10, very large amounts of precursor material (200 μmol) are required for difluorocarbene insertion. The aim of this work was to develop a halofluorocarbon-free radiosynthesis of [<sup>18</sup>F]4 and [<sup>18</sup>F]10 on the GE TRACERlab FX<sub>FN</sub> module. Additionally, another aim was to develop a chromatography-free, fully-automated synthesis of [<sup>18</sup>F]10 on the GE FX<sub>FN</sub> module.</p><p><strong>Results: </strong>Precursors 3 and 8 were synthesised in 21% and 54% yield via decarboxylative bromination, which circumvented the need for ozone-depleting dibromofluoromethane. Difluoromethyl reagents [<sup>18</sup>F]4 and [<sup>18</sup>F]10 were synthesised on a GE FX<sub>FN</sub> module with semi-prep HPLC purification in 4% and 3% RCY (decay-corrected), respectively. The synthesis of [<sup>18</sup>F]10 was further simplified through elimination of the semi-prep HPLC purification in favour of a cartridge-based solid-phase extraction (SPE) trapping and elution approach (on an alumina SPE cartridge loaded in series with a C18 Sep-Pak plus SPE cartridge) to give [<sup>18</sup>F]10 in 10.1% ± 1.9% (n = 6, decay-corrected) RCY (97% ± 3% RCP, 1.5-11 GBq/μmol). Finally, a fully automated <sup>18</sup>F-difluoromethylation radiosynthesis with [<sup>18</sup>F]10 was developed on two GE FX<sub>FN</sub> modules linked together to yield the model <sup>18</sup>F-difluoromethylated compound in adequate amounts for biological studies, in under two hours (99.0 MBq, 0.8% RCY {decay-corrected}, 1.5 GBq/μmol, 103 min total synthesis time). Therefore, we have established a path forward for routine automated synthesis of radiotracers via [<sup>18</sup>F]difluorocarbene insertion with [<sup>18</sup>F]10.</p><p><strong>Conclusions: </strong>A halofluorocarbon, chromatography-free synthesis on the GE FX<sub>FN</sub> module afforded difluorocarbene reagent [<sup>18</sup>F]10 in 10.1% ± 1.9% RCY (decay-corrected). Additionally, a fully-automated three-step [<sup>18</sup>F]difluorocarbene insertion radiosynthesis using two tandem FX<sub>FN</sub>s is described for the first time, providing a path forward to the full automation of [<sup>18</sup>F]difluorocarbene insertion on two-reactor systems.</p>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"10 1","pages":"43"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12260136/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41181-025-00353-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In recent years, the development of the [18F]difluoromethyl radical ([18F]2-((difluoromethyl)sulfonyl)benzo[d]thiazole, [18F]4), and [18F]difluorocarbene ([18F]1-chloro-4-((difluoromethyl)sulfonyl)benzene, [18F]10) prosthetic groups, has paved the way towards direct 18F-difluoromethylation in routine PET tracer synthesis with high molar activity. However, limitations in their syntheses may be hindering their widespread adoption by the radiochemistry community. Firstly, the synthesis of the precursors 2-((bromofluoromethyl)thio)benzo[d]thiazole (3) and (bromofluoromethyl)(4-chlorophfenyl)sulfane (8) requires the use of the ozone-depleting dibromofluoromethane, a reagent that is not-commercially available. Secondly, the reported syntheses of [18F]4 and [18F]10 are lengthy and require semi-preparative HPLC purification prior to the 18F-difluoromethylation step. Finally, in the case of [18F]10, very large amounts of precursor material (200 μmol) are required for difluorocarbene insertion. The aim of this work was to develop a halofluorocarbon-free radiosynthesis of [18F]4 and [18F]10 on the GE TRACERlab FXFN module. Additionally, another aim was to develop a chromatography-free, fully-automated synthesis of [18F]10 on the GE FXFN module.

Results: Precursors 3 and 8 were synthesised in 21% and 54% yield via decarboxylative bromination, which circumvented the need for ozone-depleting dibromofluoromethane. Difluoromethyl reagents [18F]4 and [18F]10 were synthesised on a GE FXFN module with semi-prep HPLC purification in 4% and 3% RCY (decay-corrected), respectively. The synthesis of [18F]10 was further simplified through elimination of the semi-prep HPLC purification in favour of a cartridge-based solid-phase extraction (SPE) trapping and elution approach (on an alumina SPE cartridge loaded in series with a C18 Sep-Pak plus SPE cartridge) to give [18F]10 in 10.1% ± 1.9% (n = 6, decay-corrected) RCY (97% ± 3% RCP, 1.5-11 GBq/μmol). Finally, a fully automated 18F-difluoromethylation radiosynthesis with [18F]10 was developed on two GE FXFN modules linked together to yield the model 18F-difluoromethylated compound in adequate amounts for biological studies, in under two hours (99.0 MBq, 0.8% RCY {decay-corrected}, 1.5 GBq/μmol, 103 min total synthesis time). Therefore, we have established a path forward for routine automated synthesis of radiotracers via [18F]difluorocarbene insertion with [18F]10.

Conclusions: A halofluorocarbon, chromatography-free synthesis on the GE FXFN module afforded difluorocarbene reagent [18F]10 in 10.1% ± 1.9% RCY (decay-corrected). Additionally, a fully-automated three-step [18F]difluorocarbene insertion radiosynthesis using two tandem FXFNs is described for the first time, providing a path forward to the full automation of [18F]difluorocarbene insertion on two-reactor systems.

氟-18二氟化烃无色谱辐射合成的研制。
背景:近年来,[18F]二氟甲基自由基([18F]2-((二氟甲基)磺酰基)苯并[d]噻唑,[18F]4)和[18F]二氟苯([18F]1-氯-4-((二氟甲基)磺酰基)苯,[18F]10)假基的发展,为在常规PET示踪剂合成中实现高摩尔活性的直接18F-二氟甲基化铺平了道路。然而,它们在合成方面的局限性可能会阻碍它们在放射化学界的广泛采用。首先,前体2-((溴氟甲基)硫代)苯并[d]噻唑(3)和(溴氟甲基)(4-氯苯基)砜(8)的合成需要使用消耗臭氧的二溴氟甲烷,这是一种非市售试剂。其次,报道的[18F]4和[18F]10的合成耗时长,需要在18F-二氟甲基化步骤之前进行半制备型HPLC纯化。最后,在[18F]10的情况下,插入二氟烃需要大量的前驱体材料(200 μmol)。这项工作的目的是在GE TRACERlab FXFN模块上开发一种无氟氯化碳的[18F]4和[18F]10的放射性合成。此外,另一个目标是在GE FXFN模块上开发一种无色谱、全自动合成[18F]10的方法。结果:前体3和8通过脱羧溴化合成,产率分别为21%和54%,避免了对消耗臭氧的二溴氟甲烷的需要。在GE FXFN模块上合成二氟甲基试剂[18F]4和[18F]10,分别以4%和3% RCY(衰变校正)进行半预备HPLC纯化。通过取消半准备HPLC纯化,采用固相萃取(SPE)捕获和洗脱方法(在氧化铝固相萃取筒上串联C18 Sep-Pak + SPE萃取筒)进一步简化了[18F]10的合成,得到[18F]10的RCY为10.1%±1.9% (n = 6,衰减校正)(97%±3% RCP, 1.5-11 GBq/μmol)。最后,在两个连接在一起的GE FXFN模块上开发了一个全自动的18F-二氟甲基化辐射合成[18F]10,在两小时内(99.0 MBq, 0.8% RCY{衰减校正},1.5 GBq/μmol,总合成时间103 min)产生了足够量的18F-二氟甲基化模型化合物,用于生物学研究。因此,我们通过[18F]插入[18F]10,为常规自动合成放射性示踪剂开辟了一条道路。结论:在GE FXFN模块上进行氟氯烃无色谱合成,得到二氟苯试剂[18F]10, RCY为10.1%±1.9%(衰减校正)。此外,本文还首次描述了使用两个串联fxfn的全自动三步[18F]二氟化苯插入放射性合成,为在双反应器系统上实现[18F]二氟化苯插入的完全自动化提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
8.70%
发文量
30
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信