Zheng Lei, Xiangsong Chen, Lixia Yuan, Jinyong Wu, Jianming Yao
{"title":"Metabolic Control for High-Efficiency Ectoine Synthesis in Engineered <i>Escherichia coli</i>.","authors":"Zheng Lei, Xiangsong Chen, Lixia Yuan, Jinyong Wu, Jianming Yao","doi":"10.1021/acssynbio.5c00330","DOIUrl":null,"url":null,"abstract":"<p><p>Ectoine is a pivotal natural osmoprotectant that functions as a compatible solute through osmoregulation, enabling microorganisms to thrive in extreme environments such as high salinity. To meet market demands, this study focuses on optimizing its production process. We initially engineered the <i>ectABC</i> gene cluster from <i>Halomonas venusta</i> via 5'-UTR modification, establishing a functional ectoine biosynthesis pathway in <i>E. coli</i>. Subsequent introduction of a rate-limiting enzyme EctB mutant (E407D) and aspartokinase mutant increased titer by 140%. To address lysine byproduct accumulation, an innovative molecular switch was employed to regulate <i>lysA</i> gene expression, achieving dynamic balance between cell growth and product synthesis. Further optimization through cofactor engineering yielded the final strain ECT31, which produced 164.6 g/L ectoine in a 100 L bioreactor within 117 h, the highest reported titer for <i>E. coli</i>-based ectoine production to date. The metabolic engineering strategy presented herein establishes a new pdigm for efficient biosynthesis of amino acid derivatives.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.5c00330","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Ectoine is a pivotal natural osmoprotectant that functions as a compatible solute through osmoregulation, enabling microorganisms to thrive in extreme environments such as high salinity. To meet market demands, this study focuses on optimizing its production process. We initially engineered the ectABC gene cluster from Halomonas venusta via 5'-UTR modification, establishing a functional ectoine biosynthesis pathway in E. coli. Subsequent introduction of a rate-limiting enzyme EctB mutant (E407D) and aspartokinase mutant increased titer by 140%. To address lysine byproduct accumulation, an innovative molecular switch was employed to regulate lysA gene expression, achieving dynamic balance between cell growth and product synthesis. Further optimization through cofactor engineering yielded the final strain ECT31, which produced 164.6 g/L ectoine in a 100 L bioreactor within 117 h, the highest reported titer for E. coli-based ectoine production to date. The metabolic engineering strategy presented herein establishes a new pdigm for efficient biosynthesis of amino acid derivatives.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.