Spectral Wavelength Selection Method Based on Improved Particle Swarm Optimization Idea and Simulated Annealing Strategy

IF 2.3 4区 化学 Q1 SOCIAL WORK
Ying Dong, Weida Wang, Nanfeng Zhang, Jinming Liu
{"title":"Spectral Wavelength Selection Method Based on Improved Particle Swarm Optimization Idea and Simulated Annealing Strategy","authors":"Ying Dong,&nbsp;Weida Wang,&nbsp;Nanfeng Zhang,&nbsp;Jinming Liu","doi":"10.1002/cem.70050","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Wavelength selection (WS) is an effective means to address the presence of many uncorrelated and collinear variables in high-dimensional spectral data that seriously influence the modeling accuracy and efficiency. Aiming to address too many wavelength variables selected by particle swarm optimization algorithm (PSO) and its premature convergence, this paper proposes a novel spectral WS approach—iPSOSA—based on the improved PSO idea and simulated annealing algorithms (SA) strategy. iPSOSA applies the velocity and position update ideas of PSO to the guided shift evolution process of the binary bits with the value of “1” in the particle and integrates with the perturbation strategy of the SA Metropolis acceptance criterion. It effectively solves the premature convergence of PSO and overcomes the low efficiency of the SA evolution, which has high efficiency in WS. By evaluating the modeling performance of different intelligent WS methods using two public spectral datasets from soil and maize, it was found that the iPSOSA outperforms the full-spectrum and other three comparative algorithms. The best iPSOSA partial least squares regression models for soil organic matter and maize moisture contents have excellent regression performance, with the validation set's coefficient of determination higher than 0.98, relative root mean squared error lower than 1.50%, and residual predictive deviation higher than 8.00. iPSOSA presents better comprehensive performance in WS than traditional intelligent algorithms in terms of modeling performance, variable dimensionality, and searching efficiency, providing a new solution for obtaining high correlation wavelength variables in the spectral modeling process.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.70050","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

Abstract

Wavelength selection (WS) is an effective means to address the presence of many uncorrelated and collinear variables in high-dimensional spectral data that seriously influence the modeling accuracy and efficiency. Aiming to address too many wavelength variables selected by particle swarm optimization algorithm (PSO) and its premature convergence, this paper proposes a novel spectral WS approach—iPSOSA—based on the improved PSO idea and simulated annealing algorithms (SA) strategy. iPSOSA applies the velocity and position update ideas of PSO to the guided shift evolution process of the binary bits with the value of “1” in the particle and integrates with the perturbation strategy of the SA Metropolis acceptance criterion. It effectively solves the premature convergence of PSO and overcomes the low efficiency of the SA evolution, which has high efficiency in WS. By evaluating the modeling performance of different intelligent WS methods using two public spectral datasets from soil and maize, it was found that the iPSOSA outperforms the full-spectrum and other three comparative algorithms. The best iPSOSA partial least squares regression models for soil organic matter and maize moisture contents have excellent regression performance, with the validation set's coefficient of determination higher than 0.98, relative root mean squared error lower than 1.50%, and residual predictive deviation higher than 8.00. iPSOSA presents better comprehensive performance in WS than traditional intelligent algorithms in terms of modeling performance, variable dimensionality, and searching efficiency, providing a new solution for obtaining high correlation wavelength variables in the spectral modeling process.

基于改进粒子群优化思想和模拟退火策略的光谱波长选择方法
波长选择(Wavelength selection, WS)是解决高维光谱数据中存在的许多不相关和共线变量严重影响建模精度和效率的有效手段。针对粒子群优化算法(PSO)选择的波长变量过多以及其过早收敛的问题,提出了一种基于改进粒子群优化算法思想和模拟退火算法(SA)策略的新型光谱WS方法——ipsosa。iPSOSA将PSO的速度和位置更新思想应用到粒子中值为“1”的二进制位的引导位移演化过程中,并与SA Metropolis接受准则的摄动策略相结合。它有效地解决了粒子群算法过早收敛的问题,克服了粒子群算法进化效率低的问题,使得粒子群算法在WS中具有较高的效率。利用土壤和玉米两种公共光谱数据集,对不同智能WS方法的建模性能进行了评估,发现iPSOSA算法优于全光谱算法和其他三种比较算法。最佳的iPSOSA偏最小二乘回归模型对土壤有机质和玉米含水率具有良好的回归性能,验证集的决定系数大于0.98,相对均方根误差小于1.50%,残差预测偏差大于8.00。iPSOSA在WS建模性能、变维度、搜索效率等方面均优于传统智能算法的综合性能,为光谱建模过程中获取高相关波长变量提供了新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信