GEN Self-Labeling Object Detector for PCB Recycling Evaluation

Leandro Honorato de S. Silva;Agostinho Freire;George O. A. Azevedo;Sérgio Campello Oliveira;Carlo M. R. da Silva;Bruno J. T. Fernandes
{"title":"GEN Self-Labeling Object Detector for PCB Recycling Evaluation","authors":"Leandro Honorato de S. Silva;Agostinho Freire;George O. A. Azevedo;Sérgio Campello Oliveira;Carlo M. R. da Silva;Bruno J. T. Fernandes","doi":"10.1109/OJCS.2025.3584297","DOIUrl":null,"url":null,"abstract":"Waste Printed Circuit Boards (WPCBs) contain many valuable and rare metals found in electronic waste, and recycling these boards can help recover these metals and prevent hazardous elements from harming the environment. However, the diverse composition of PCBs makes it challenging to automate the recycling process, which should ideally be tailored to each PCB’s composition. Computer vision is a possible solution to evaluate WPCBs, but most state-of-the-art models depend on labeled datasets unavailable in the WPCB domain. Building a large and fully labeled WPCB dataset is expensive and time-consuming. In addition, the presence of long-tailed class imbalance, where specific electronic components are significantly more prevalent than others, further complicates the development of accurate detection and classification models. To address this, we propose a new method called GEN Self-Labeling Electronic Component Detector, which utilizes a domain adaptation strategy to train semi-supervised teacher-student models that can handle the lack of fully labeled datasets while mitigating the effects of class imbalance. We also introduce a new version of the Waste Printed Circuit Board Economic Feasibility Assessment (WPCB-EFAv2), which characterizes the PCB’s composition by identifying hazardous components, calculating the density of each component type, and estimating the metals that could be recovered from recycling electrolytic capacitors and integrated circuits. Finally, we present a case study involving six PCBs with different characteristics, from which we estimated that 121 g of metals could be recovered. The most recovered metal (108 g) was aluminum from electrolytic capacitors. This information can help reduce the PCB’s composition uncertainty, leading to more efficient dismantling and cost-effective recycling processes.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"1041-1052"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11058390","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11058390/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Waste Printed Circuit Boards (WPCBs) contain many valuable and rare metals found in electronic waste, and recycling these boards can help recover these metals and prevent hazardous elements from harming the environment. However, the diverse composition of PCBs makes it challenging to automate the recycling process, which should ideally be tailored to each PCB’s composition. Computer vision is a possible solution to evaluate WPCBs, but most state-of-the-art models depend on labeled datasets unavailable in the WPCB domain. Building a large and fully labeled WPCB dataset is expensive and time-consuming. In addition, the presence of long-tailed class imbalance, where specific electronic components are significantly more prevalent than others, further complicates the development of accurate detection and classification models. To address this, we propose a new method called GEN Self-Labeling Electronic Component Detector, which utilizes a domain adaptation strategy to train semi-supervised teacher-student models that can handle the lack of fully labeled datasets while mitigating the effects of class imbalance. We also introduce a new version of the Waste Printed Circuit Board Economic Feasibility Assessment (WPCB-EFAv2), which characterizes the PCB’s composition by identifying hazardous components, calculating the density of each component type, and estimating the metals that could be recovered from recycling electrolytic capacitors and integrated circuits. Finally, we present a case study involving six PCBs with different characteristics, from which we estimated that 121 g of metals could be recovered. The most recovered metal (108 g) was aluminum from electrolytic capacitors. This information can help reduce the PCB’s composition uncertainty, leading to more efficient dismantling and cost-effective recycling processes.
用于PCB回收评估的GEN自标记对象检测器
废弃印刷电路板(wpcb)含有电子废物中发现的许多有价值和稀有金属,回收这些电路板可以帮助回收这些金属并防止有害元素危害环境。然而,PCB的不同组成使得自动化回收过程具有挑战性,理想情况下,回收过程应根据每个PCB的组成进行定制。计算机视觉是评估WPCB的一种可能的解决方案,但大多数最先进的模型依赖于WPCB领域中不可用的标记数据集。构建一个大型且完全标记的WPCB数据集既昂贵又耗时。此外,长尾类不平衡的存在,即特定电子元件明显比其他电子元件更普遍,进一步使准确检测和分类模型的开发复杂化。为了解决这个问题,我们提出了一种称为GEN自标记电子元件检测器的新方法,该方法利用领域自适应策略来训练半监督师生模型,该模型可以处理缺乏完全标记的数据集,同时减轻班级不平衡的影响。我们还介绍了新版的废弃印刷电路板经济可行性评估(WPCB-EFAv2),该评估通过识别有害成分、计算每种成分的密度以及估计可从回收电解电容器和集成电路中回收的金属来表征PCB的成分。最后,我们提出了一个涉及六种不同特征的多氯联苯的案例研究,从中我们估计可以回收121克金属。回收最多的金属(108克)是电解电容器中的铝。这些信息有助于减少PCB成分的不确定性,从而导致更有效的拆解和更具成本效益的回收过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信