CSS-T Codes From Reed-Muller Codes

Jessalyn Bolkema;Emma Andrade;Thomas Dexter;Harrison Eggers;Victoria L. Fisher;Luke Szramowsky;Felice Manganiello
{"title":"CSS-T Codes From Reed-Muller Codes","authors":"Jessalyn Bolkema;Emma Andrade;Thomas Dexter;Harrison Eggers;Victoria L. Fisher;Luke Szramowsky;Felice Manganiello","doi":"10.1109/JSAIT.2025.3583217","DOIUrl":null,"url":null,"abstract":"CSS-T codes are a class of stabilizer codes introduced by Rengaswamy et al. with desired properties for quantum fault-tolerance. In this work, we comprehensively study non-degenerate CSS-T codes built from Reed-Muller codes. These classical codes allow for constructing optimal CSS-T code families with nonvanishing asymptotic rates up to <inline-formula> <tex-math>${}\\frac {1}{2}$ </tex-math></inline-formula> and possibly diverging minimum distance when non-degenerate.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"6 ","pages":"199-204"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11050903/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CSS-T codes are a class of stabilizer codes introduced by Rengaswamy et al. with desired properties for quantum fault-tolerance. In this work, we comprehensively study non-degenerate CSS-T codes built from Reed-Muller codes. These classical codes allow for constructing optimal CSS-T code families with nonvanishing asymptotic rates up to ${}\frac {1}{2}$ and possibly diverging minimum distance when non-degenerate.
来自Reed-Muller代码的CSS-T代码
CSS-T码是Rengaswamy等人引入的一类具有量子容错特性的稳定器码。在这项工作中,我们全面研究了由Reed-Muller代码构建的非简并CSS-T代码。这些经典码允许构造最优的CSS-T码族,其非消失渐近速率高达${}\frac{1}{2}$,并且可能在非简并时发散最小距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信