A review of double compression detection for digital multimedia

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tanfeng Sun, Xiao Han, Qiang Xu, Xing Yan, Yueneng Wang
{"title":"A review of double compression detection for digital multimedia","authors":"Tanfeng Sun,&nbsp;Xiao Han,&nbsp;Qiang Xu,&nbsp;Xing Yan,&nbsp;Yueneng Wang","doi":"10.1016/j.neucom.2025.130983","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of AI-driven multimedia manipulation has created an urgent need for more sophisticated digital forensics solutions. Current detection methods, while effective against specific tampering types, suffer from limited generalizability across diverse manipulation techniques. To address this challenge, researchers have developed Double Compression Detection (DCD) as a universal approach through compression-domain analysis. This review presents the comprehensive analysis of DCD techniques, systematically evaluating cutting-edge techniques for audio, image, and video content forensics. The pros and cons of existing DCD schemes are summarized for the first time from the perspective of generalization and effectiveness in this review. The emerging trends and fundamental limitations of existing researches are critically examined to guide future research directions in DCD.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130983"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225016558","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of AI-driven multimedia manipulation has created an urgent need for more sophisticated digital forensics solutions. Current detection methods, while effective against specific tampering types, suffer from limited generalizability across diverse manipulation techniques. To address this challenge, researchers have developed Double Compression Detection (DCD) as a universal approach through compression-domain analysis. This review presents the comprehensive analysis of DCD techniques, systematically evaluating cutting-edge techniques for audio, image, and video content forensics. The pros and cons of existing DCD schemes are summarized for the first time from the perspective of generalization and effectiveness in this review. The emerging trends and fundamental limitations of existing researches are critically examined to guide future research directions in DCD.
数字多媒体双压缩检测技术综述
人工智能驱动的多媒体操作的快速发展,迫切需要更复杂的数字取证解决方案。目前的检测方法虽然对特定的篡改类型有效,但在不同的操作技术中泛化性有限。为了应对这一挑战,研究人员通过压缩域分析开发了双压缩检测(DCD)作为一种通用方法。这篇综述介绍了DCD技术的全面分析,系统地评估了音频、图像和视频内容取证的前沿技术。本文首次从推广和有效性的角度对现有DCD方案的优缺点进行了综述。对现有研究的新趋势和基本局限性进行了批判性审查,以指导DCD的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信